1. 程式人生 > >[LeetCode]Minimum Path Sum,解題報告

[LeetCode]Minimum Path Sum,解題報告

前言

這道題目我今年面試的時候考過,不給出具體的哪家公司了,也是給定矩陣從左上角到右下角的和最小的路徑。 開始我並不知道是確定了起始點和結束點,因此我第一反應是用DFS遍歷矩陣,然後那個面試官說不讓我用遞迴(其實dfs也不一定非用遞迴實現)。想了一下我說用動態規劃,給他寫了狀態方程,時間複雜度為O(n^2),他非跟我糾結用動態規劃可以到O(n)的時間複雜度,我表示無語。雖然最後我還是拿到了這家的offer,不過面試官的水平讓我有些失望,最終還是沒去

題目

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

思路

很簡單的二維動態規劃題目,我直接給出狀態方程,設dp[i][j]為從(0,0)到(i,j)的路徑和最小值 dp[i][j] = MIN(dp[i - 1][j], dp[i][j - 1]) + matrix[i][j]

AC程式碼

import java.util.Scanner;


public class MinimunPathSum {
    public static void main(String[] args) {
        int i, j, m, n, sum, grid[][];
        Scanner cin = new Scanner(System.in);

        while (cin.hasNext()) {
            m = cin.nextInt();
            n = cin.nextInt();
            grid = new int[m][n];

            for (i = 0; i < m; i++) {
                for (j = 0; j < n; j++) {
                    grid[i][j] = cin.nextInt();
                }
            }

            sum = minPathSum(grid);

            System.out.println(sum);
        }

        cin.close();
    }

    public static int minPathSum(int[][] grid) {
        int i, j, dp[][] = new int[grid.length][grid[0].length];
        int col, row;

        // initial variable
        row = grid.length;
        col = grid[0].length;

        // initial dp array
        dp[0][0] = grid[0][0];
        for (i = 1; i < row; i++) {
            dp[i][0] = dp[i - 1][0] + grid[i][0];
        }
        for (j = 1; j < col; j++) {
            dp[0][j] = dp[0][j - 1] + grid[0][j];
        }

        // dynamic process, dp[i][j] = MIN{dp[i - 1][j], dp[i][j - 1]} + grid[i][j]
        for (i = 1; i < row; i++) {
            for (j = 1; j < col; j++) {
                dp[i][j] =
                        dp[i - 1][j] <= dp[i][j - 1] ? dp[i - 1][j] + grid[i][j] : dp[i][j - 1]
                                + grid[i][j];
            }
        }

        return dp[row - 1][col - 1];
    }
}