人臉檢測、提取特徵點(dlib下的三個例子)
阿新 • • 發佈:2019-01-25
#include <dlib/image_processing/frontal_face_detector.h> #include <dlib/image_processing/render_face_detections.h> #include <dlib/image_processing.h> #include <dlib/gui_widgets.h> #include <dlib/image_io.h> #include <dlib/opencv.h> #include <iostream> #include <opencv2/opencv.hpp> using namespace dlib; using namespace std; int main(int argc, char** argv) { try { // This example takes in a shape model file and then a list of images to // process. We will take these filenames in as command line arguments. // Dlib comes with example images in the examples/faces folder so give // those as arguments to this program. if (argc == 1) { cout << "Call this program like this:" << endl; cout << "./face_landmark_detection_ex shape_predictor_68_face_landmarks.dat faces/*.jpg" << endl; cout << "\nYou can get the shape_predictor_68_face_landmarks.dat file from:\n"; cout << "http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl; return 0; } std::cout <<"argc:"<< argc << std::endl; // We need a face detector. We will use this to get bounding boxes for // each face in an image. frontal_face_detector detector = get_frontal_face_detector(); // And we also need a shape_predictor. This is the tool that will predict face // landmark positions given an image and face bounding box. Here we are just // loading the model from the shape_predictor_68_face_landmarks.dat file you gave // as a command line argument. shape_predictor sp; std::cout << "argv[1]:"<< argv[1] << std::endl; deserialize(argv[1]) >> sp; image_window win;// win_faces; // Loop over all the images provided on the command line. for (int i = 2; i < argc; ++i) { cout << "processing image " << argv[i] << endl; array2d<rgb_pixel> img; load_image(img, argv[i]); // Make the image larger so we can detect small faces. pyramid_up(img); // Now tell the face detector to give us a list of bounding boxes // around all the faces in the image. std::vector<rectangle> dets = detector(img); cout << "Number of faces detected: " << dets.size() << endl; // Now we will go ask the shape_predictor to tell us the pose of // each face we detected. std::vector<full_object_detection> shapes; for (unsigned long j = 0; j < dets.size(); ++j) { full_object_detection shape = sp(img, dets[j]); cout << "number of parts: "<< shape.num_parts() << endl; cout << "pixel position of first part: " << shape.part(0) << endl; cout << "pixel position of second part: " << shape.part(1) << endl; // You get the idea, you can get all the face part locations if // you want them. Here we just store them in shapes so we can // put them on the screen. shapes.push_back(shape); cv::Mat temp = dlib::toMat(img); for (int k = 0; k < 68; ++k){ circle(temp, cvPoint(shapes[j].part(k).x(), shapes[j].part(k).y()), 3, cv::Scalar(0, 0, 255), -1); } } // Now let's view our face poses on the screen. win.clear_overlay(); win.set_image(img); //win.add_overlay(render_face_detections(shapes)); //// We can also extract copies of each face that are cropped, rotated upright, //// and scaled to a standard size as shown here: //dlib::array<array2d<rgb_pixel> > face_chips; //extract_image_chips(img, get_face_chip_details(shapes), face_chips); //win_faces.set_image(tile_images(face_chips)); cout << "Hit enter to process the next image..." << endl; cin.get(); } } catch (exception& e) { cout << "\nexception thrown!" << endl; cout << e.what() << endl; } system("pause"); }
把shape_predictor_68_face_landmarks.dat檔案 和 faces資料夾(...\dlib-18.18\examples\faces)複製到該專案的Release資料夾下,使用命令列進入該專案的Release目錄下,執行該命令:
face_landmark_detection_ex.exe shape_predictor_68_face_landmarks.dat faces/2008_001322.jpg