tensorboard視覺化操作過程及測試程式碼
阿新 • • 發佈:2019-01-25
在anaconda的spyder下生成logs檔案後在chrome瀏覽器中開啟tensorboard,可以看到自己搭建的框架。
總結一下過程與遇到的問題:
1,程式碼中python3.6原來函式改變為tf.summary.FileWriter、tf.global_variables_initializer()。不然報錯無法生成logs檔案
2.生成後,在logs檔案那層,按住shift+右鍵,開啟cmd(可以省去cd到該層目錄的過程),輸入命令:tensorboard –logdir logs
開啟chrome瀏覽器,不要輸入他的http….(試了很多次不行,坑)
輸入localhost:6006
測試程式碼:
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 25 19:53:43 2017
@author: Administrator
"""
import matplotlib.pyplot as plt
import time
import tensorflow as tf
import numpy as np
def add_layer(inputs,in_size,out_size,activation_function=None):
with tf.name_scope('layer'):
with tf.name_scope('weights'):
Weights=tf.Variable(tf.random_normal([in_size,out_size]),name='W')
with tf.name_scope('biases'):
biases=tf.Variable(tf.zeros([1,out_size])+0.1,name='b')
with tf.name_scope('Wx_plus_b'):
Wx_plus_b=tf.add(tf.matmul(inputs,Weights),biases)
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs
#define placeholder for inputs to network
with tf.name_scope('inputsdong'):
xs=tf.placeholder(tf.float32,[None,1],name='x_inputdong')
ys=tf.placeholder(tf.float32,[None,1],name='y_inputdong')
#add hidden layer
l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
#add output layer
prediction=add_layer(l1,10,1,activation_function=None)
#the error between prediction and real data
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
with tf.name_scope('traindong'):
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
sess=tf.Session()
writer=tf.summary.FileWriter("logs/",sess.graph)
#important step
sess.run(tf.global_variables_initializer())