BZOJ1802: [Ahoi2009]checker(性質分析 dp)
阿新 • • 發佈:2019-01-26
max rst type getc name template %d problem chm
題意
題目鏈接
Sol
一個不太容易發現但是又很顯然的性質:
如果有兩個相鄰的紅格子,那麽第一問答案為0, 第二問可以推
否則第一問答案為偶數格子上的白格子數,第二問答案為偶數格子上的紅格子數
#include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second //#define int long long #define LL long long #define Fin(x) {freopen(#x".in","r",stdin);} #define Fout(x) {freopen(#x".out","w",stdout);} using namespace std; const int MAXN = 1001, mod = 1e9 + 7, INF = 1e9 + 10; const double eps = 1e-9; template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;} template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;} template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;} template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);} template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;} template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;} template <typename A> inline void debug(A a){cout << a << '\n';} template <typename A> inline LL sqr(A x){return 1ll * x * x;} inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, a[MAXN]; LL f[MAXN]; signed main() { N = read(); int ans[2] = {0, 0}, flag = 0; memset(f, 0x3f, sizeof(f)); for(int i = 1; i <= N; i++) { a[i] = read(); if(i > 2 && a[i] && a[i] == a[i - 1]) flag = 1; if((!(i & 1))) ans[a[i]]++; if(a[i]) f[i] = 1; } if(!flag) {printf("%d\n%d", ans[0], ans[1]); return 0;} for(int i = 2; i < N; i++) { if(a[i] && a[i + 1]) { for(int j = i - 1; j > 1; j--) chmin(f[j], f[j + 1] + f[j + 2]); for(int j = i + 2; j < N; j++) chmin(f[j], f[j - 1] + f[j - 2]); } } LL out = 0; for(int i = 2; i < N; i += 2) out += f[i]; cout << 0 << "\n" << out; return 0; } /* 5 0 0 1 1 0 */
BZOJ1802: [Ahoi2009]checker(性質分析 dp)