Max Sum of Max-K-sub-sequence HDU
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<queue> using namespace std; const int INF = 0x7fffffff; const int maxn = 1e6 + 10; int a[maxn], sum[maxn]; int read() { int f = 1, i = 0; char ch = getchar(); while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { i = i*10 + (ch - 48); ch = getchar(); } return i*f; } int main(void) { int t; scanf ("%d", &t); while (t--) { int n, k; scanf ("%d %d", &n, &k); sum[0] = 0; register int i; for (i = 1; i <= n; i+=4) { if (i+4 > n) break; scanf("%d %d %d %d", &a[i], &a[i+1], &a[i+2], &a[i+3]); a[i+n] = a[i], a[i+n+1] = a[i+1], a[i+n+2] = a[i+2], a[i+n+3] = a[i+3]; sum[i] = sum[i-1] + a[i], sum[i+1] = sum[i] + a[i+1]; sum[i+2] = sum[i+1] + a[i+2], sum[i+3] = sum[i+2] + a[i+3]; } for (; i <= n; ++i) { scanf ("%d", &a[i]); a[i+n] = a[i]; sum[i] = sum[i-1] + a[i]; } int m = 2*n; for (i = n+1; i <= m; i+=3) { if (i+3 > m) break; sum[i] = sum[i-1] + a[i], sum[i+1] = sum[i] + a[i+1], sum[i+2] = sum[i+1] + a[i+2]; } for (; i <= m; ++i) { sum[i] = sum[i-1] + a[i]; } deque<int> q; int st, ed, ans = -INF; m = n+k-1; for (i = 1; i <= m; ++i) { while (!q.empty() && sum[i-1] < sum[q.back()]) q.pop_back(); while (!q.empty() && q.front() < i-k) q.pop_front(); q.push_back(i-1); if (sum[i] - sum[q.front()] > ans) { ans = sum[i] - sum[q.front()]; st = q.front() + 1; ed = i; } } if (ed > n) ed -= n; printf("%d %d %d\n", ans, st, ed); } return 0; }