使用非精確線搜尋Armijo演算法確定步長的最速下降法(MATLAB)
阿新 • • 發佈:2019-01-28
Armijo演算法實現:
最速下降法實現:function mk = armijo( fun, xk, rho, sigma, gk ) assert( rho > 0 && rho < 1 ); assert( sigma > 0 && sigma < 0.5 ); mk = 0; max_mk = 100; while mk <= max_mk x = xk - rho^mk * gk; if feval( fun, x ) <= feval( fun, xk ) - sigma * rho^mk * norm( gk )^2 break; end mk = mk + 1; end return;
function [opt_x, opt_f, k] = grad_descent( fun_obj, fun_grad, x0 ) max_iter = 5000; % max number of iterations EPS = 1e-5; % threshold of gradient norm % Armijo parameters rho = 0.5; sigma = 0.2; % initialization k = 0; xk = x0; while k < max_iter k = k + 1; gk = feval( fun_grad, xk ); % gradient vector dk = -1 * gk; % search direction if norm( dk ) < EPS break; end yk = feval( fun_obj, xk ); fprintf( '#iter = %5d, xk = %.5f, F = %.5f\n', k, xk, yk ); mk = armijo( fun_obj, xk, rho, sigma, gk ); xk = xk + rho^mk * dk; end fprintf( '----------------------\n' ); if k == max_iter fprintf( 'Problem Not solved!\n' ); else fprintf( 'Problem solved!\n' ); end % record results opt_x = xk; opt_f = feval( fun_obj, xk ); return;