1. 程式人生 > >tensorflow——tf.one_hot以及tf.sparse_to_dense函式

tensorflow——tf.one_hot以及tf.sparse_to_dense函式

1、tf.one_hot函式

import numpy as np
import tensorflow as tf

SIZE=6
CLASS=10
label1=np.random.randint(0,10,size=SIZE) 

b = tf.one_hot(label1,CLASS,1,0)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    sess.run(b)
    print(sess.run(b))

輸出結果:
產生的隨機數:[7, 2, 9, 8, 4, 2]

[[ 0.
0. 0. 0. 0. 0. 0. 1. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] [ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.] [ 0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]

2、tf.sparse_to_dense函式

import tensorflow as tf   
import numpy as np

SIZE=6
CLASS=10
label=np.random
.randint(0,10,size=SIZE) label=np.reshape(label,[SIZE,1]) index = np.reshape(np.arange(SIZE), [SIZE, 1]) #use a matrix concated = tf.concat([index, label], 1) onehot_labels = tf.sparse_to_dense(concated, [SIZE, CLASS], 1.0, 0.0) #use a vector concated2=tf.constant([1,3,4]) onehot_labels2 = tf.sparse
_to_dense(concated2, [ CLASS], 1.0, 0.0) #use a scalar concated3=tf.constant(5) onehot_labels3 = tf.sparse_to_dense(concated3, [ CLASS], 1.0, 0.0) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) result1=sess.run(onehot_labels) result2 = sess.run(onehot_labels2) result3 = sess.run(onehot_labels3) print ("This is result1:") print (result1) print ("This is result2:") print (result2) print ("This is result3:") print (result3)

輸出結果:
產生的隨機數:[7, 2, 9, 8, 4, 2]

This is result1:
[[ 0.  0.  0.  0.  0.  0.  0.  1.  0.  0.]
 [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  1.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  1.  0.]
 [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  1.  0.  0.  0.  0.  0.]]
This is result2:
[ 0.  1.  0.  1.  1.  0.  0.  0.  0.  0.]
This is result3:
[ 0.  0.  0.  0.  0.  1.  0.  0.  0.  0.]