1103 Integer Factorization(30 分)
1103 Integer Factorization(30 分)
The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤400), K (≤N) and P (1<P≤7). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i]
(i
= 1, ..., K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 122+42+22+22+12, or 112+62+22+22+22, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { a1,a2,⋯,aK } is said to be larger
If there is no solution, simple output Impossible
.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
#include <iostream> #include <cstdio> #include <string> #include <vector> #include <algorithm> #include <cmath> using namespace std; vector<int> fac, ans, temp; int n, k, p, maxfacsum = -1; int power(int x) { int ans = 1; for(int i = 0; i < p; i++) { ans *= x; } return ans; } void init() { int i = 0, temp = 0; while(temp <= n) { fac.push_back(temp); temp = power(++i); } } void dfs(int index, int nowk, int sum, int facsum) { if(sum == n && nowk == k) { if(facsum > maxfacsum) { ans = temp; maxfacsum = facsum; } return ; } if(sum > n || nowk > k) { return ; } if(index - 1 >= 0) { temp.push_back(index); dfs(index, nowk + 1, sum + fac[index], facsum + index); temp.pop_back(); dfs(index - 1, nowk, sum, facsum); } } int main() { scanf("%d%d%d", &n, &k, &p); init(); dfs(fac.size() - 1, 0, 0, 0); if(maxfacsum == -1) { printf("Impossible\n"); } else { printf("%d = %d^%d", n, ans[0], p); for(int i = 1; i < ans.size(); i++) { printf(" + %d^%d", ans[i], p); } } return 0; }