(模板) NTT long long 版
阿新 • • 發佈:2019-02-02
const LL P = 50000000001507329LL; //190734863287 * 2 ^ 18 + 1, g = 3 //const LL P = 4179340454199820289LL; // 29 * (2 ^ 57), 4e18, g = 3 //const LL P = 1945555039024054273LL; // 27 * (2 ^ 56), 1e18, g = 5 const int G = 3; LL a[N], b[N]; LL wn[25]; int n; LL mul(LL x, LL y) { return (x * y - (LL)(x / (long double)P * y + 1e-3) * P + P) % P; } LL qpow(LL x, LL k, LL p) { LL ret = 1; while(k) { if(k & 1) ret = mul(ret, x); k >>= 1; x = mul(x, x); } return ret; } void getwn() { for(int i = 1; i <= 18; ++i) { int t = 1 << i; wn[i] = qpow(G, (P - 1) / t, P); } } void change(LL *y, int len) { for(int i = 1, j = len / 2; i < len - 1; ++i) { if(i < j) swap(y[i], y[j]); int k = len / 2; while(j >= k) { j -= k; k /= 2; } j += k; } } void NTT(LL *y, int len, int on) { change(y, len); int id = 0; for(int h = 2; h <= len; h <<= 1) { ++id; for(int j = 0; j < len; j += h) { LL w = 1; for(int k = j; k < j + h / 2; ++k) { LL u = y[k]; LL t = mul(y[k+h/2], w); y[k] = u + t; if(y[k] >= P) y[k] -= P; y[k+h/2] = u - t + P; if(y[k+h/2] >= P) y[k+h/2] -= P; w = mul(w, wn[id]); } } } if(on == -1) { for(int i = 1; i < len / 2; ++i) swap(y[i], y[len-i]); LL inv = qpow(len, P - 2, P); for(int i = 0; i < len; ++i) y[i] = mul(y[i], inv); } }