資料結構-----Unique Binary Search Trees II (唯一二叉排序樹的個數)
阿新 • • 發佈:2019-02-02
Unique Binary Search Trees II
題目描述:(輸出用1–n這幾個數字能組成的所有BST.)
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3 confused what"{1,#,2,3}"means? > read more on how binary tree is serialized on OJ. OJ's Binary Tree Serialization:The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below. Here's an example: 1 / \ 2 3 / 4 \ 5 The above binary tree is serialized as"{1,2,3,#,#,4,#,#,5}".
思路:
BST(二叉排序樹):中序遍歷的結果為非遞減序列,並且節點(個數和值)相同的不同二叉樹的中序遍歷結果都相同;
當左子樹的節點個數確定後,右子樹的個數也隨之確定;
當節點個數為0或1時,二叉樹只有1種,表示為f(0)=1,f(1)=f(0)*f(0);
當節點個數為2時,總的種類數=左子樹為空f(0)*右子樹不為空f(1)+左子樹不為空f(1)*右子樹為空f(0),即f(0)*f(1)+f(1)*f(0)=2種;
當節點個數為3時,有左子樹為空f(0)*右子樹不為空f(2)+左子樹不為空f(2)*右子樹為空f(0)+左右子樹均不為空f(1)*f(1),即f(0)*f(2)+f(2)*f(0)+f(1)*f(1)=1*2+2*1+1*1=5種;
……
當節點個數為n時,結果為f(0)*f(n-1)+f(1)*f(n-2)+……+f(n-2)*f(1)+f(n-1)*f(0);
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<TreeNode *> generateTrees(int n) { if (n <= 0) return helper(1, 0);//一個節點就能建立一棵樹,為了減少遞迴 return helper(1,n);//將結點個數傳進去 } private: vector<TreeNode*> helper(int start,int end) { vector<TreeNode*> subTree; if(start>end)//判斷 { subTree.push_back(NULL); return subTree; } for (int k = start; k <= end; k++) { // 假設k為根節點,根節點左邊是左子樹,右邊是右子樹,一分為二,依次往下遞迴 //返回不同二叉樹的根節點,有幾個就返回幾個根節點,然後裝進容器裡面 vector<TreeNode*> leftSubs = helper(start, k - 1); vector<TreeNode*> rightSubs = helper(k + 1, end); //左子右子樹和根節點結合 //以k為根節點的樹的個數,等於左子樹的個數乘以右子樹的個數 for(int i=0;i<leftSubs.size();i++)//for (auto i : leftSubs) { for(int j=0;j<rightSubs.size();j++)// for (auto j : rightSubs) { TreeNode *node = new TreeNode(k);//為每個樹申請新空間 node->left =leftSubs[i];//左子樹 node->right = rightSubs[j];//右子樹 subTree.push_back(node);//根節點 } } } return subTree;//返回樹 } };