1. 程式人生 > >牛人林達華推薦有關機器學習的數學書籍

牛人林達華推薦有關機器學習的數學書籍

refer:http://blog.csdn.net/laozhaokun/article/details/37908099點選開啟連結

1. 線性代數 (Linear Algebra):

我想國內的大學生都會學過這門課程,但是,未必每一位老師都能貫徹它的精要。這門學科對於Learning是必備的基礎,對它的透徹掌握是必不可少的。我在科大一年級的時候就學習了這門課,後來到了香港後,又重新把線性代數讀了一遍,所讀的是

Introduction to Linear Algebra (3rd Ed.)  by Gilbert Strang.

這本書是MIT的線性代數課使用的教材,也是被很多其它大學選用的經典教材。它的難度適中,講解清晰,重要的是對許多核心的概念討論得比較透徹。我個人覺得,學習線性代數,最重要的不是去熟練矩陣運算和解方程的方法

——這些在實際工作中MATLAB可以代勞,關鍵的是要深入理解幾個基礎而又重要的概念:子空間(Subspace),正交(Orthogonality),特徵值和特徵向量(Eigenvalues and eigenvectors),和線性變換(Linear transform)從我的角度看來,一本線代教科書的質量,就在於它能否給這些根本概念以足夠的重視,能否把它們的聯絡講清楚。Strang的這本書在這方面是做得很好的。

而且,這本書有個得天獨厚的優勢。書的作者長期在MIT講授線性代數課(18.06),課程的videoMITOpen courseware網站上有提供。有時間的朋友可以一邊看著名師授課的錄影,一邊對照課本學習或者複習。

網易公開課地址:http://v.163.com/special/opencourse/daishu.html

2. 概率和統計 (Probability and Statistics):

概率論和統計的入門教科書很多,我目前也沒有特別的推薦。我在這裡想介紹的是一本關於多元統計的基礎教科書:

Applied Multivariate Statistical Analysis (5th Ed.)  by Richard A. Johnson and Dean W. Wichern

這本書是我在剛接觸向量統計的時候用於學習的,我在香港時做研究的基礎就是從此打下了。實驗室的一些同學也借用這本書學習向量統計

。這本書沒有特別追求數學上的深度,而是以通俗易懂的方式講述主要的基本概念,讀起來很舒服,內容也很實用。對於Linear regression, factor analysis, principal component analysis (PCA), and canonical component analysis (CCA)這些Learning中的基本方法也展開了初步的論述。

之後就可以進一步深入學習貝葉斯統計和Graphical models。一本理想的書是

Introduction to Graphical Models (draft version).  by M. Jordan and C. Bishop.

我不知道這本書是不是已經出版了(不要和Learning in Graphical Models混淆,那是個論文集,不適合初學)。這本書從基本的貝葉斯統計模型出發一直深入到複雜的統計網路的估計和推斷,深入淺出,statistical learning的許多重要方面都在此書有清楚論述和詳細講解。MIT內部可以access,至於外面,好像也是有電子版的。

3. 分析 (Analysis):

我想大家基本都在大學就學過微積分或者數學分析,深度和廣度則隨各個學校而異了。這個領域是很多學科的基礎,值得推薦的教科書莫過於

Principles of Mathematical Analysis, by Walter Rudin

有點老,但是絕對經典,深入透徹。缺點就是比較艱深——這是Rudin的書的一貫風格,適合於有一定基礎後回頭去看。

在分析這個方向,接下來就是泛函分析(Functional Analysis)

Introductory Functional Analysis with Applications, by Erwin Kreyszig.

適合作為泛函的基礎教材,容易切入而不失全面。我特別喜歡它對於譜論和運算元理論的特別關注,這對於做learning的研究是特別重要的。Rudin也有一本關於functional analysis的書,那本書在數學上可能更為深刻,但是不易於上手,所講內容和learning的切合度不如此書。

在分析這個方向,還有一個重要的學科是測度理論(Measure theory),但是我看過的書裡面目前還沒有感覺有特別值得介紹的。

4. 拓撲 (Topology):

在我讀過的基本拓撲書各有特色,但是綜合而言,我最推崇:

Topology (2nd Ed.)  by James Munkres

這本書是Munkres教授長期執教MIT拓撲課的心血所凝。對於一般拓撲學(General topology)有全面介紹,而對於代數拓撲(Algebraic topology)也有適度的探討。此書不需要特別的數學知識就可以開始學習,由淺入深,從最基本的集合論概念(很多書不屑講這個)到Nagata-Smirnov TheoremTychonoff theorem等較深的定理(很多書避開了這個)都覆蓋了。講述方式思想性很強,對於很多定理,除了給出證明過程和引導你思考其背後的原理脈絡,很多令人讚歎的亮點——我常讀得忘卻飢餓,不願釋手。很多習題很有水平。

5. 流形理論 (Manifold theory):

對於拓撲和分析有一定把握時,方可開始學習流形理論,否則所學只能流於浮淺。我所使用的書是

Introduction to Smooth Manifolds.  by John M. Lee

雖然書名有introduction這個單詞,但是實際上此書涉入很深,除了講授了基本的manifoldtangent spacebundle, sub-manifold等,還探討了諸如綱理論(Category theory)德拉姆上同調(De Rham cohomology)積分流形等一些比較高階的專題。對於李群和李代數也有相當多的討論。行文通俗而又不失嚴謹,不過對某些記號方式需要熟悉一下。

雖然李群論是建基於平滑流形的概念之上,不過,也可能從矩陣出發直接學習李群和李代數——這種方法對於急需使用李群論解決問題的朋友可能更加實用。而且,對於一個問題從不同角度看待也利於加深理解。下面一本書就是這個方向的典範:

Lie Groups, Lie Algebras, and Representations: An Elementary Introduction.  by Brian C. Hall

此書從開始即從矩陣切入,從代數而非幾何角度引入矩陣李群的概念。並通過定義運算的方式建立exponential mapping,並就此引入李代數。這種方式比起傳統的通過左不變向量場(Left-invariant vector field)的方式定義李代數更容易為人所接受,也更容易揭示李代數的意義。最後,也有專門的論述把這種新的定義方式和傳統方式聯絡起來。

————————————————————————————

無論是研究Vision, Learning還是其它別的學科,數學終究是根基所在學好數學是做好研究的基石學好數學的關鍵歸根結底是自己的努力,但是選擇一本好的書還是大有益處的。不同的人有不同的知識背景,思維習慣和研究方向,因此書的選擇也因人而異,只求適合自己,不必強求一致。上面的書僅僅是從我個人角度的出發介紹的,我的閱讀經歷實在非常有限,很可能還有比它們更好的書(不妨也告知我一聲,先說聲謝謝了)。

文轉自:http://bbs.sciencenet.cn/home.php?mod=space&uid=224917&do=blog&id=491478