spark學習03之wordCount統計並排序(java)
阿新 • • 發佈:2019-02-05
wordCount就是對一大堆單詞進行個數統計,然後排序。從網上找篇英文文章放到本地文件。
pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.fei</groupId> <artifactId>word-count</artifactId> <version>0.0.1-SNAPSHOT</version> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>1.3.0</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>2.0.2</version> <configuration> <source>1.8</source> <target>1.8</target> </configuration> </plugin> </plugins> </build> </project>
WordCount.java
package com.fei; import java.util.Arrays; import java.util.List; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import scala.Tuple2; /** * 單詞統計,並按降序排序,輸出前10個單詞及個數 * @author Jfei * */ public class WordCount { public static void main(String[] args) { //1.本地模式,建立spark配置及上下文 SparkConf conf = new SparkConf().setAppName("wordCount").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); //2.讀取本地檔案,並建立RDD JavaRDD<String> linesRDD = sc.textFile("e:\\words.txt"); //3.每個單詞由空格隔開,將每行的linesRDD拆分為每個單詞的RDD JavaRDD<String> wordsRDD = linesRDD.flatMap(s -> Arrays.asList(s.split("\\s"))); //相當於 ==> /*JavaRDD<String> wordsRDD = linesRDD.flatMap(new FlatMapFunction<String, String>(){ private static final long serialVersionUID = 1L; @Override public Iterable<String> call(String line) throws Exception { return Arrays.asList(line.split(" ")); } });*/ //4.將每個單詞轉為key-value的RDD,並給每個單詞計數為1 JavaPairRDD<String,Integer> wordsPairRDD = wordsRDD.mapToPair(s -> new Tuple2<String,Integer>(s, 1)); //相當於 ==> /*JavaPairRDD<String,Integer> wordsPairRDD = wordsRDD.mapToPair(new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override public Tuple2<String, Integer> call(String word) throws Exception { return new Tuple2<String,Integer>(word,1); } });*/ //5.計算每個單詞出現的次數 JavaPairRDD<String,Integer> wordsCountRDD = wordsPairRDD.reduceByKey((a,b) -> a+b); //相當於 ==> /*JavaPairRDD<String,Integer> wordsCountRDD = wordsPairRDD.reduceByKey(new Function2<Integer, Integer, Integer>() { @Override public Integer call(Integer v1, Integer v2) throws Exception { return v1 + v2; } });*/ //6.因為只能對key進行排序,所以需要將wordsCountRDD進行key-value倒置,返回新的RDD JavaPairRDD<Integer,String> wordsCountRDD2 = wordsCountRDD.mapToPair(s -> new Tuple2<Integer,String>(s._2, s._1)); //相當於 ==> /*JavaPairRDD<Integer,String> wordsCountRDD2 = wordsCountRDD.mapToPair(new PairFunction<Tuple2<String,Integer>, Integer, String>() { private static final long serialVersionUID = 1L; @Override public Tuple2<Integer, String> call(Tuple2<String, Integer> t) throws Exception { return new Tuple2<Integer,String>(t._2,t._1); } });*/ //7.對wordsCountRDD2進行排序,降序desc JavaPairRDD<Integer,String> wordsCountRDD3 = wordsCountRDD2.sortByKey(false); //8.只取前10個 List<Tuple2<Integer, String>> result = wordsCountRDD3.take(10); //9.列印 result.forEach(t -> System.out.println(t._2 + " " + t._1)); sc.close(); } }
如果JDK不是1.8的,那修改下pom.xml及程式碼中不要使用lambda表示式