BZOJ4816 SDOI2017 數字表格 莫比烏斯反演
傳送門
做莫比烏斯反演題顯著提高了我的\(\LaTeX\)水平
推式子(默認\(N \leq M\),分數下取整,會省略大部分過程)
\(\begin{align*} \prod\limits_{i=1}^N \prod\limits_{j=1}^M f[gcd(i,j)] & = \prod\limits_{d=1}^N f[d]^{\sum\limits_{i=1}^\frac{N}{d} \sum\limits_{j=1}^\frac{M}{d}[gcd(i,j)==1]} \\ & = \prod\limits_{d = 1}^N f[d]^{\sum\limits_{p=1}^\frac{N}{d} \mu(p) \frac{N}{dp} \frac{M}{dp}} \end{align*}\)
推到這裏可以\(O(TN)\)地通過兩個數論分塊得出答案,可以獲得70pts
當然這還不夠,按照老套路枚舉\(dp\)繼續推式子
\(\begin{align*} \prod\limits_{d = 1}^N f[d]^{\sum\limits_{p=1}^\frac{N}{d} \mu(p) \frac{N}{dp} \frac{M}{dp}} & = \prod\limits_{T=1} ^ N \prod\limits_{d | T} f[d] ^ {\mu (\frac{T}{d}) \frac{N}{T} \frac{M}{T}} \\ & = \prod\limits_{T=1} ^ N \prod\limits_{d | T} (f[d] ^ {\mu (\frac{T}{d})} ) ^ { \frac{N}{T} \frac{M}{T}} \end{align*}\)
\(\frac{N}{T} \frac{M}{T}\)可以數論分塊,所以要求\(f[d]^{\mu(\frac{T}{d})}\)的前綴積
當你以為要線性篩的時候……\(N \leq 10^6\)直接枚舉倍數乘進去就行了……
總復雜度\(O(NlogN + T\sqrt{N})\)
#include<bits/stdc++.h> //This code is written by Itst using namespace std; inline int read(){ int a = 0; char c = getchar(); bool f = 0; while(!isdigit(c)){ if(c == ‘-‘) f = 1; c = getchar(); } while(isdigit(c)){ a = (a << 3) + (a << 1) + (c ^ ‘0‘); c = getchar(); } return f ? -a : a; } const int MOD = 1e9 + 7 , MAXN = 1e6 + 7; bool nprime[MAXN]; int fib[MAXN] , inv[MAXN] , mu[MAXN] , times[MAXN] , prime[MAXN]; int N , M , cnt; inline int poww(long long a , int b){ int times = 1; while(b){ if(b & 1) times = times * a % MOD; a = a * a % MOD; b >>= 1; } return times; } void init(){ fib[1] = inv[1] = times[1] = times[0] = mu[1] = 1; for(int i = 2 ; i <= N ; ++i){ times[i] = 1; fib[i] = (fib[i - 1] + fib[i - 2]) % MOD; inv[i] = poww(fib[i] , MOD - 2); } for(int i = 2 ; i <= N ; ++i){ if(!nprime[i]){ prime[++cnt] = i; mu[i] = -1; } for(int j = 1 ; j <= cnt && i * prime[j] <= N ; ++j){ nprime[i * prime[j]] = 1; if(i % prime[j] == 0) break; mu[i * prime[j]] = -1 * mu[i]; } } for(int i = 1 ; i <= N ; ++i) for(int j = 1 ; j * i <= N ; ++j) if(mu[j]) times[j * i] = 1ll * times[j * i] * (mu[j] > 0 ? fib[i] : inv[i]) % MOD; for(int i = 2 ; i <= N ; ++i) times[i] = 1ll * times[i - 1] * times[i] % MOD; for(int i = 0 ; i <= N ; ++i) inv[i] = poww(times[i] , MOD - 2); } int main(){ N = 1e6; init(); for(int T = read() ; T ; --T){ N = read(); M = read(); if(N > M) swap(N , M); int ans = 1; for(int i = 1 , pi ; i <= N ; i = pi + 1){ pi = min(N / (N / i) , M / (M / i)); ans = 1ll * ans * poww(1ll * times[pi] * inv[i - 1] % MOD , 1ll * (N / i) * (M / i) % (MOD - 1)) % MOD; } printf("%d\n" , ans); } return 0; }
BZOJ4816 SDOI2017 數字表格 莫比烏斯反演