BZOJ2957: 樓房重建(分塊)
阿新 • • 發佈:2019-02-07
void con return 自己 calc main online bit lock
題意
題目鏈接
Sol
自己YY出了一個\(n \sqrt{n} \log n\)的辣雞做法沒想到還能過。。
可以直接對序列分塊,我們記第\(i\)個位置的值為\(a[i] = \frac{H_i}{i}\),那麽顯然一個位置能被看到當前僅當前面的\(a[i]\)都比他小。可以直接拿個vector維護,每次暴力在vector裏二分
#include<bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 10; inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N, M, block, belong[MAXN], ll[MAXN], rr[MAXN], lim; double mx[MAXN], a[MAXN]; vector<double> v[MAXN]; void rebuild(int k, int p, int val) { int l = ll[k], r = rr[k]; a[p] = (double) val / p; v[k].clear(); mx[k] = 0; for(int i = l; i <= r; i++) mx[k] = max(mx[k], a[i]); sort(v[k].begin(), v[k].end()); double cur = 0; for(int i = l; i <= r; i++) { if(a[i] > cur) v[k].push_back(a[i]); cur = max(cur, a[i]); } } int calc() { int ret = 0; double cur = 0; for(int i = 1; i <= lim; i++) { ret += (v[i].size() - (upper_bound(v[i].begin(), v[i].end(), cur) - v[i].begin())); cur = max(cur, mx[i]); } return ret; } int main() { N = read(); M = read(); block = sqrt(N *log2(N)); for(int i = 1; i <= N; i++) belong[i] = (i - 1) / block + 1, lim = max(lim, belong[i]); for(int i = 1; i <= lim; i++) ll[i] = (i - 1) * block + 1, rr[i] = ll[i] + block - 1; for(int i = 1; i <= M; i++) { int x = read(), y = read(); rebuild(belong[x], x, y); printf("%d\n", calc()); } return 0; } /* 3 4 2 4 3 6 1 1000000000 1 1 */
BZOJ2957: 樓房重建(分塊)