ORB特徵原理(淺顯易懂)
緒論
假如我有2張美女圖片,我想確認這2張圖片中美女是否是同一個人。這太簡單了,以我專研島國動作片錘鍊出來的火眼金睛只需輕輕掃過2張圖片就可以得出結論。但是,如果我想讓計算機來完成這個功能就困難重重了:再性感的美女在計算機眼中也只是0-1組成的資料而已。一種可行的方法是找出2張圖片中的特徵點,描述這些特徵點的屬性,然後比較這2副圖片的特徵點的屬性。如果有足夠多的特徵點具有相同的屬性,那麼就可以認為2副圖片中的美女是同一個人。
下面我們來看看ORB演算法如何完成這這個過程。
連結地址1.特徵點的檢測
影象的特徵點可以簡單的理解為影象中比較顯著顯著的點,如輪廓點,較暗區域中的亮點,較亮區域中的暗點等。
原圖 輪廓線(可能的特徵點)
ORB採用FAST(features from accelerated segment test)演算法來檢測特徵點。FAST核心思想就是找出那些卓爾不群的點,即拿一個點跟它周圍的點比較,如果它和其中大部分的點都不一樣就可以認為它是一個特徵點。
備註:每個小方格代表一個畫素,方格內的顏色只是為了便於區分,不代表該畫素點的顏色。
FAST具體計算過程:
1. 從圖片中選取一個畫素點P,下面我們將判斷它是否是一個特徵點。我們首先把它的密度(即灰度值)設為Ip
2. 設定一個合適的闕值t :當2個點的灰度值之差的絕對值大於t時,我們認為這2個點不相同。
3. 考慮該畫素點周圍的16個畫素。(見上圖)
4. 現在如果這16個點中有連續的n個點都和點不同,那麼它就是一個角點。 這裡n設定為12。
5. 我們現在提出一個高效的測試,來快速排除一大部分非特徵點的點。該測試僅僅檢查在位置1、9、5和13四個位置的畫素(首先檢查1和9,看它們是否和點相同。如果是,再檢查5和13)。如果是一個角點,那麼上述四個畫素點中至少有3個應該和點相同。如果都不滿足,那麼不可能是一個角點。
圖中紅色的點為使用FAST演算法找到的特徵點。
連結地址2.特徵點的描述
連結地址 2.1計算特徵描述子
得到特徵點後我們需要以某種方式F描述這些特徵點的屬性。這些屬性的輸出我們稱之為該特徵點的描述子(Feature DescritorS).ORB採用BRIEF演算法來計算一個特徵點的描述子。BRIEF演算法的核心思想是在關鍵點P的周圍以一定模式選取N個點對,把這N個點對的比較結果組合起來作為描述子。
具體來講分為以下幾步。
1.以關鍵點P為圓心,以d為半徑做圓O。
2.在圓O內某一模式選取N個點對。這裡為方便說明,N=4,實際應用中N可以取512.
假設當前選取的4個點對如上圖所示分別標記為:
連結地址
連結地址
3.定義操作T
4.分別對已選取的點對進行T操作,將得到的結果進行組合。
假如:
則最終的描述子為:1011
連結地址2.2理想的特徵點描述子應該具備的屬性
在現實生活中,我們從不同的距離,不同的方向、角度,不同的光照條件下觀察一個物體時,物體的大小,形狀,明暗都會有所不同。但我們的大腦依然可以判斷它是同一件物體。理想的特徵描述子應該具備這些性質。即,在大小、方向、明暗不同的影象中,同一特徵點應具有足夠相似的描述子,稱之為描述子的可復現性。
當以某種理想的方式分別計算上圖中紅色點的描述子時,應該得出同樣的結果。即描述子應該對光照(亮度)不敏感,具備尺度一致性(大小 ),旋轉一致性(角度)等。
上面我們用BRIEF演算法得到的描述子並不具備以上這些性質。因此我們得想辦法改進我們的演算法。ORB並沒有解決尺度一致性問題,在OpenCV的ORB實現中採用了影象金字塔來改善這方面的效能。ORB主要解決BRIEF描述子不具備旋轉不變性的問題。
回顧一下BRIEF描述子的計算過程:在當前關鍵點P周圍以一定模式選取N個點對,組合這N個點對的T操作的結果就為最終的描述子。當我們選取點對的時候,是以當前關鍵點為原點,以水平方向為X軸,以垂直方向為Y軸建立座標系。當圖片發生旋轉時,座標系不變,同樣的取點模式取出來的點卻不一樣,計算得到的描述子也不一樣,這是不符合我們要求的。因此我們需要重新建立座標系,使新的座標系可以跟隨圖片的旋轉而旋轉。這樣我們以相同的取點模式取出來的點將具有一致性。
打個比方,我有一個印章,上面刻著一些直線。用這個印章在一張圖片上蓋一個章子,圖片上分處直線2頭的點將被取出來。印章不變動的情況下,轉動下圖片,再蓋一個章子,但這次取出來的點對就和之前的不一樣。為了使2次取出來的點一樣,我需要將章子也旋轉同一個角度再蓋章。(取點模式可以認為是章子上直線的分佈情況)
ORB在計算BRIEF描述子時建立的座標系是以關鍵點為圓心,以關鍵點和取點區域的形心的連線為X軸建立2維座標系。
在圖1中,P為關鍵點。圓內為取點區域,每個小格子代表一個畫素。現在我們把這塊圓心區域看做一塊木板,木板上每個點的質量等於其對應的畫素值。根據積分學的知識我們可以求出這個密度不均勻木板的質心Q。計算公式如下。其中R為圓的半徑。
我們知道圓心是固定的而且隨著物體的旋轉而旋轉。當我們以PQ作為座標軸時(圖2),在不同的旋轉角度下,我們以同一取點模式取出來的點是一致的。這就解決了旋轉一致性的問題。
連結地址3.特徵點的匹配
ORB演算法最大的特點就是計算速度快 。 這首先得益於使用FAST檢測特徵點,FAST的檢測速度正如它的名字一樣是出了名的快。再次是使用BRIEF演算法計算描述子,該描述子特有的2進位制串的表現形式不僅節約了儲存空間,而且大大縮短了匹配的時間。
例如特徵點A、B的描述子如下。
A:10101011
B:10101010
我們設定一個閾值,比如80%。當A和B的描述子的相似度大於90%時,我們判斷A,B是相同的特徵點,即這2個點匹配成功。在這個例子中A,B只有最後一位不同,相似度為87.5%,大於80%。則A和B是匹配的。
我們將A和B進行異或操作就可以輕鬆計算出A和B的相似度。而異或操作可以借組硬體完成,具有很高的效率,加快了匹配的速度。
OpenCV中ORB演算法的匹配結果
連結地址總結:
本文只對ORB演算法核心思想做一個解讀。在具體的實現中還涉及到很多的細節及優化問題。瞭解更多的細節請參考下面一些資料。
http://download.csdn.net/detail/yang843061497/7785917
http://blog.sina.com.cn/s/blog_916b71bb0100w9al.html
本人QQ:843061497 歡迎相互交流學習