1. 程式人生 > >Android 方向感測器與磁力計和加速度感測器之間的關係

Android 方向感測器與磁力計和加速度感測器之間的關係

        一般情況下,在android系統中獲取手機的方位資訊azimuth似乎是很簡單的事情,在api中有TYPE_ORIENTATION常量,可以像得到加速度感測器那樣得到方向感測器sm.getDefaultSensor(Sensor.TYPE_ORIENTATION);然而我們這樣做的話在最新版的SDK中就會看到這麼一句話:“TYPE_ORIENTATION   This constant is deprecated. use SensorManager.getOrientation() instead. ”即這種方式也過期,不建議使用!Google建議我們在應用程式中使用SensorManager.getOrientation()來獲得原始資料。

   其實,Android中的方向感測器也是是通過磁力計magnetometer和加速度感測器accelerometer抽象出來的。因此我們可以通過磁力計magnetometer和加速度感測器accelerometer來獲得方位資訊。由磁場和加速度如何得到方位資訊的演算法在api中已被封裝好了。通過這種方式比直接獲得方向感測器獲得的資訊更準確。

values[0]  :azimuth 方向角,但用(磁場+加速度)得到的資料範圍是(-180180,也就是說,0表示正北,90表示正東,180/-180表示正南,-90表示正西。而直接通過方向感應器資料範圍是(0359360/0表示正北,90表示正東,180表示正南,270

表示正西。

values[1]  pitch 傾斜即由靜止狀態開始,前後翻轉

values[2]  roll 旋轉角即由靜止狀態開始,左右翻轉

//api中原始碼

 public static float[] getOrientation(float[] R, float values[]) {
        /*
         * 4x4 (length=16) case:
         *   /  R[ 0]   R[ 1]   R[ 2]   0  \
         *   |  R[ 4]   R[ 5]   R[ 6]   0  |
         *   |  R[ 8]   R[ 9]   R[10]   0  |
         *   \      0       0       0   1  /
         *  
         * 3x3 (length=9) case:
         *   /  R[ 0]   R[ 1]   R[ 2]  \
         *   |  R[ 3]   R[ 4]   R[ 5]  |
         *   \  R[ 6]   R[ 7]   R[ 8]  /
         *
         */
        if (R.length == 9) {
            values[0] = (float)Math.atan2(R[1], R[4]);
            values[1] = (float)Math.asin(-R[7]);
            values[2] = (float)Math.atan2(-R[6], R[8]);
        } else {
            values[0] = (float)Math.atan2(R[1], R[5]);
            values[1] = (float)Math.asin(-R[9]);
            values[2] = (float)Math.atan2(-R[8], R[10]);
        }
        return values;
    }

//getRotaionMatrix原始碼

 public static boolean getRotationMatrix(float[] R, float[] I,
            float[] gravity, float[] geomagnetic) {
        // TODO: move this to native code for efficiency
        float Ax = gravity[0];
        float Ay = gravity[1];
        float Az = gravity[2];
        final float Ex = geomagnetic[0];
        final float Ey = geomagnetic[1];
        final float Ez = geomagnetic[2];
        float Hx = Ey*Az - Ez*Ay;
        float Hy = Ez*Ax - Ex*Az;
        float Hz = Ex*Ay - Ey*Ax;
        final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
        if (normH < 0.1f) {
            // device is close to free fall (or in space?), or close to
            // magnetic north pole. Typical values are  > 100.
            return false;
        }
        final float invH = 1.0f / normH;
        Hx *= invH;
        Hy *= invH;
        Hz *= invH;
        final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
        Ax *= invA;
        Ay *= invA;
        Az *= invA;
        final float Mx = Ay*Hz - Az*Hy;
        final float My = Az*Hx - Ax*Hz;
        final float Mz = Ax*Hy - Ay*Hx;
        if (R != null) {
            if (R.length == 9) {
                R[0] = Hx;     R[1] = Hy;     R[2] = Hz;
                R[3] = Mx;     R[4] = My;     R[5] = Mz;
                R[6] = Ax;     R[7] = Ay;     R[8] = Az;
            } else if (R.length == 16) {
                R[0]  = Hx;    R[1]  = Hy;    R[2]  = Hz;   R[3]  = 0;
                R[4]  = Mx;    R[5]  = My;    R[6]  = Mz;   R[7]  = 0;
                R[8]  = Ax;    R[9]  = Ay;    R[10] = Az;   R[11] = 0;
                R[12] = 0;     R[13] = 0;     R[14] = 0;    R[15] = 1;
            }
        }
        if (I != null) {
            // compute the inclination matrix by projecting the geomagnetic
            // vector onto the Z (gravity) and X (horizontal component
            // of geomagnetic vector) axes.
            final float invE = 1.0f / (float)Math.sqrt(Ex*Ex + Ey*Ey + Ez*Ez);
            final float c = (Ex*Mx + Ey*My + Ez*Mz) * invE;
            final float s = (Ex*Ax + Ey*Ay + Ez*Az) * invE;
            if (I.length == 9) {
                I[0] = 1;     I[1] = 0;     I[2] = 0;
                I[3] = 0;     I[4] = c;     I[5] = s;
                I[6] = 0;     I[7] =-s;     I[8] = c;
            } else if (I.length == 16) {
                I[0] = 1;     I[1] = 0;     I[2] = 0;
                I[4] = 0;     I[5] = c;     I[6] = s;
                I[8] = 0;     I[9] =-s;     I[10]= c;
                I[3] = I[7] = I[11] = I[12] = I[13] = I[14] = 0;
                I[15] = 1;
            }
        }
        return true;
    }

其中R[]資料是旋轉陣列,用來存放磁場和加速度的資料。之後在通過getOrientation方法通過一定的演算法利用R[]得到方位資訊values[]陣列。

編寫的程式碼如下:

package xuan.android.orientation;

import android.app.Activity;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.widget.TextView;

public class OrientationActivity extends Activity {
    /** Called when the activity is first created. */
	TextView textview=null;
	private SensorManager sm=null;
	private Sensor aSensor=null;
	private Sensor mSensor=null;
	 
	float[] accelerometerValues=new float[3];
	float[] magneticFieldValues=new float[3];
	float[] values=new float[3];
	float[] rotate=new float[9];
	
    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
        textview=(TextView)findViewById(R.id.view0);
        sm=(SensorManager)getSystemService(Context.SENSOR_SERVICE);
        aSensor=sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
        mSensor=sm.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
        sm.registerListener(myListener, aSensor, SensorManager.SENSOR_DELAY_GAME);
        sm.registerListener(myListener, mSensor, SensorManager.SENSOR_DELAY_GAME);
        
        
    }

	@Override
	protected void onPause() {
		// TODO Auto-generated method stub
		super.onPause();
		sm.unregisterListener(myListener);
	}
	final SensorEventListener myListener=new SensorEventListener(){

		@Override
		public void onAccuracyChanged(Sensor sensor, int accuracy) {
			// TODO Auto-generated method stub
			
		}

		@Override
		public void onSensorChanged(SensorEvent event) {
			// TODO Auto-generated method stub
			if(event.sensor.getType()==Sensor.TYPE_ACCELEROMETER){
				accelerometerValues=event.values;
			}
			if(event.sensor.getType()==Sensor.TYPE_MAGNETIC_FIELD){
				magneticFieldValues=event.values;
			}
			
			SensorManager.getRotationMatrix(rotate, null, accelerometerValues, magneticFieldValues);
			SensorManager.getOrientation(rotate, values);
			//經過SensorManager.getOrientation(rotate, values);得到的values值為弧度
			//轉換為角度
			values[0]=(float)Math.toDegrees(values[0]);
			textview.setText("x="+values[0]);
		}};
		
	
    
}