3D數學之矩陣的各種求逆
阿新 • • 發佈:2019-02-08
經過三天的準備終於把矩陣的各種求逆方法以及程式碼完成了。心裡有點小激動,come on,來吧,點燃你的心中的那團火,跟著遊戲音樂的律動一起跟我走入神祕的3D世界。
下面介紹三種方法:
1.用伴隨矩陣求逆
2.用高斯-約當消元法求逆
3.用LU分解求逆(聽別人說效率最高)
在介紹方法之前,先闡述幾個概念
第一種方法:伴隨矩陣
為了求A的逆,我們需要求A*和det(A)
為了求A*,我們需要求C
所以我們需要一個求代數餘子式的函式,從而實現一個求代數餘子式矩陣的函式
由於求代數餘子式中需要求餘子陣以及其行列式的值。所以我們需要一個函式實現求餘子陣,一個求矩陣的行列式的函式。
為了求det(A),我們也需要一個求矩陣行列式的函式。而行列式的求法又牽涉到代數餘子式的求法,所以求行列式的函式與求代數餘子式的函式相互巢狀呼叫,最終出口在求行列式的函式裡,即當矩陣只有一個元素的時候。
下面提供實現程式碼:
matrix的定義如下:
#ifndef MATRIX_H #define MATRIX_H #include <iostream> namespace Seamanj { class Matrix { protected: int Nrows,Ncols; double *data; public: Matrix(int rows = 0,int cols = 0,const double *M = NULL); Matrix(Matrix& m)//深度複製 { Nrows=m.Nrows; Ncols=m.Ncols; data=new double[Nrows*Ncols]; for(int i=0;i<Nrows;i++) for(int j=0;j<Ncols;j++) (*this)(i,j)=m(i,j); } ~Matrix(); void setNrows(int i){Nrows=i;} void setNcols(int i){Ncols=i;} int getNrows(){return Nrows;} int getNcols(){return Ncols;} double& operator()(int i,int j); double getDetermination(); Matrix getSubmatrixByDeleting_i_row_j_col(int i,int j); double getCofactor_i_j(int i,int j); Matrix getCofactorMatrix(); Matrix getTranspose(); Matrix getInverseByAdjugate(); Matrix getInverseByGauss_Jordan_Elimination(); Matrix getInverseByLU_Decompose(); friend Matrix LU_Decompose(Matrix& m, int *index,double* detSign=NULL); friend void LU_back_substitution(Matrix& m, int *index, double col[],double result[]); Matrix operator*(double d); Matrix operator=(Matrix& m);//深度賦值 friend Matrix operator*(double d,Matrix& m); friend std::ostream& operator<<(std::ostream &os ,Matrix& m); }; Matrix operator*(double d,Matrix& m); } #endif
求餘子陣函式的實現
Matrix Matrix::getSubmatrixByDeleting_i_row_j_col(int i,int j) { if( i < 0 || j < 0 || i >= Nrows || j >= Ncols ) { cerr << "getSubmatrixByDeleting_i_row_j_col error!"<<endl; exit(-1); } Matrix sm(getNrows()-1,getNcols()-1); for(int ii=0;ii<Nrows-1;ii++) for(int jj=0;jj<Ncols-1;jj++) { if(ii < i && jj < j) sm(ii,jj)=(*this)(ii,jj); else if(ii < i && jj >= j) sm(ii,jj)=(*this)(ii,jj+1); else if(ii >= i && jj < j) sm(ii,jj)=(*this)(ii+1,jj); else if(ii >= i && jj >= j) sm(ii,jj)=(*this)(ii+1,jj+1); } return sm; }
求代數餘子式函式的實現
double Matrix::getCofactor_i_j(int i,int j)
{
if( i < 0 || j < 0 || i >= Nrows || j >= Ncols || Nrows != Ncols)
{
cerr << "getCofactor_i_j error"<<endl;
exit(-1);
}
//double d=pow(-1.0,i+j) * getSubmatrixByDeleting_i_row_j_col(i,j).getDetermination();
//這樣寫是錯誤的,原因: getSubmatrixByDeleting_i_row_j_col(i,j)返回的是區域性的,呼叫完後會析構
Matrix m=getSubmatrixByDeleting_i_row_j_col(i,j);
double d=pow(-1.0,i+j) * m.getDetermination();
return d;
}
求代數餘子式矩陣的實現程式碼
Matrix Matrix::getCofactorMatrix()
{
Matrix cm(Nrows,Ncols);
for(int i=0;i<cm.getNrows();i++)
for(int j=0;j<cm.getNcols();j++)
cm(i,j)=getCofactor_i_j(i,j);
return cm;
}
求矩陣行列式函式的實現程式碼
double Matrix::getDetermination()
{
if( Nrows < 1 || Ncols < 1|| Nrows != Ncols)
{
cerr << "getDetermination error"<<endl;
exit(-1);
}
if(Nrows == 1)
return (*this)(0,0);
double sum=0.0;
for(int i=0;i<Ncols;i++)
{
sum+=(*this)(i,0)*getCofactor_i_j(i,0);
}
return sum;
}
最終還需要一個求轉置函式,將代數餘子式矩陣轉置為伴隨矩陣
Matrix Matrix::getTranspose()
{
if( Nrows < 1 || Ncols < 1)
{
cerr << "getTranspose error"<<endl;
exit(-1);
}
Matrix tm(Ncols,Nrows);
for(int i=0;i<Nrows;i++)
for(int j=0;j<Ncols;j++)
tm(j,i)=(*this)(i,j);
return tm;
}
這樣用伴隨矩陣求逆的過程可以表示如下:
Matrix Matrix::getInverseByAdjugate()
{
if(Nrows != Ncols || Nrows < 1)
{
cerr << "getInverseByAdjugate error"<<endl;
exit(-1);
}
Matrix m=getCofactorMatrix();
m=m.getTranspose();
double d=getDetermination();
if(d < 1e-6 && d>-1e-6)
{
cerr<<"This matrix isn't invertible"<<endl;
exit(-1);
}
return m *(1/getDetermination());
}
第二種方法:高斯-約當消元法
來個小插曲,為什麼叫高斯-約當消元法(Gauss_Jordan_Elimination)呢?
那是因為高斯在消元的時候只想到了往下消元,沒有往上消,而約當卻想到了往上消,所以叫Gauss_Jordan_Elimination。
對應的程式碼如下:
Matrix Matrix::getInverseByGauss_Jordan_Elimination()
{
if(Nrows != Ncols || Nrows < 1)
{
cerr << "getgetInverseByGauss_Jordan_Elimination error"<<endl;
exit(-1);
}
Matrix m(Nrows,2*Ncols);
for(int i=0;i<m.Nrows;i++)//求增廣矩陣
for(int j=0;j<m.Ncols;j++)
{
if(j<Ncols)
m(i,j)=(*this)(i,j);
else if(j == i+Ncols)
m(i,j)=1;
else
m(i,j)=0;
}
for(int j=0;j<Ncols;j++)//對每列進行消元
{
double max=1e-6;
int maxrow=-1;
for(int i=j;i<Nrows;i++)//找出每列的最大絕對值的元素作為主元
{
if(abs(m(i,j))>max)
{
max=abs(m(i,j));
maxrow=i;
}
}
if(maxrow == -1)
{
cerr<<"This matrix isn't invertible"<<endl;
exit(-1);
}
if(maxrow != j)//換行
{
for(int k=j;k<m.Ncols;k++)
{
double temp;
temp=m(j,k);
m(j,k)=m(maxrow,k);
m(maxrow,k)=temp;
}
}
for(int k=m.Ncols-1;k>=j;k--)//與主元同行的元素(從主元到行末,因為主元前面是0元素,所以沒有必要除了)除以主元,注意是從後往前,這樣可以保持主元除自己之前保持不變
{
m(j,k)/=m(j,j);
}
for(int k=m.Ncols-1;k>=j;k--)//對每行從後往前進行消元
{
for(int l=0;l<m.Nrows;l++)
{
if(l!=j)
{
m(l,k)-=m(l,j)*m(j,k);
}
}
}
}
Matrix result(Nrows,Ncols);
for(int i=0;i<Nrows;i++)
for(int j=0;j<Ncols;j++)
result(i,j)=m(i,j+Ncols);
return result;
}
第三種 利用LU分解求逆
LU分解函式的實現
Matrix LU_Decompose(Matrix& m, int *index,double* detSign)
{
double *rowNormalizer=new double[m.Nrows];
Matrix result(m);
double exchangeParity = 1.0;
//calulate a normalizer for each row
for(int i=0;i<result.Nrows;i++)
{
double maxvalue=0.0;
for(int j=0;j<result.Ncols;j++)
{
if(abs(result(i,j))>maxvalue)
maxvalue=abs(result(i,j));
}
if(maxvalue < 1e-6 && maxvalue > -1e-6)
{
cerr<<"This matrix isn't invertible"<<endl;
delete []rowNormalizer;
exit(-1);
}
rowNormalizer[i]=1.0/maxvalue;
index[i]=i;
}
//Perform decomposition
for(int j=0;j<result.Ncols;j++)
{
for(int i=0;i<j;i++)
{
double sum=result(i,j);
for(int k=0;k<i;k++)
sum-=result(i,k)*result(k,j);
result(i,j)=sum;
}
//Find pivot element
int pivotRow=-1;
double maxvalue=0.0;
for(int i=j;i<result.Nrows;i++)
{
double sum=result(i,j);
for(int k=0;k<j;k++)
sum-=result(i,k)*result(k,j);
result(i,j)=sum;//這裡sum已經存入m
sum=abs(sum)*rowNormalizer[i];
if(sum>maxvalue)
{
maxvalue=sum;
pivotRow=i;
}
}
if(pivotRow == -1)
{
cerr<<"This matrix isn't invertible"<<endl;
exit(-1);
}
if(pivotRow!=j)//Exchange rows
{
for(int k=0 ; k<m.Ncols;k++)
{
double temp=result(j,k);
result(j,k)=result(pivotRow,k);
result(pivotRow,k)=temp;
}
int temp=index[j];
index[j]=index[pivotRow];
index[pivotRow]=temp;
rowNormalizer[pivotRow]= rowNormalizer[j];//為什麼不交換?因為前面的已經用不到,所以不用交換
exchangeParity = -exchangeParity;
}
//Divide by pivot element
if(j != result.Nrows-1)
{
double denom = 1.0/result(j,j);
for(int i=j+1;i<result.Nrows;i++)
result(i,j)*=denom;
}
}
if(detSign)
*detSign=exchangeParity;
delete []rowNormalizer;
return result;
}
LU迴帶函式的實現
void LU_back_substitution(Matrix& m, int *index, double col[],double result_col[])
{
for(int i=0;i<m.Nrows;i++)
result_col[i]=col[index[i]];
//Perform forward substitution for Ly=col;
for(int i=0;i<m.Nrows;i++)
{
double sum=result_col[i];
for(int j=0;j<i;j++)
sum-=m(i,j)*result_col[j];
result_col[i]=sum;
}
//Perform backward substitution for Ux=y
for(int i=m.Nrows-1;i>=0;i--)
{
double sum=result_col[i];
for(int j=i+1;j<m.Ncols;j++)
sum-=m(i,j)*result_col[j];
result_col[i]=sum/m(i,i);
}
}
最終通過LU分解求逆的函式如下:
Matrix Matrix::getInverseByLU_Decompose()
{
if(Nrows != Ncols || Nrows < 1)
{
cerr << "getInverseByLU_Decompose error"<<endl;
exit(-1);
}
int* index=new int[Nrows];
double* col=new double[Nrows];
double* result_col=new double[Nrows];
Matrix m= LU_Decompose(*this,index);
Matrix result(Nrows,Ncols);
for(int j=0;j<Ncols;j++)//設定為單位矩陣的每一列
{
for(int i=0;i<Nrows;i++)
if(j==i)
col[i]=1.0;
else
col[i]=0.0;
LU_back_substitution(m,index,col,result_col);
for(int i=0;i<Nrows;i++)
result(i,j)=result_col[i];
}
delete []index;
delete []col;
delete []result_col;
return result;
}
下列通過這三種方法進行驗證上面那個高斯消元法介紹的矩陣的求逆
void main()
{
double m_try[9] = {1,2,3,2,4,5,3,5,6};
Seamanj::Matrix myMatrix(3,3,m_try);
cout << "Origin Matrix:" << endl << myMatrix << endl ;
myMatrix=myMatrix.getInverseByAdjugate();
cout << "After inversing ByAdjugate:"<<endl<<myMatrix;
myMatrix=myMatrix.getInverseByGauss_Jordan_Elimination();
cout << "After inversing ByGauss_Jordan_Elimination:"<<endl<<myMatrix;
myMatrix=myMatrix.getInverseByLU_Decompose();
cout<< "After inversing ByLU_Decompose:"<<endl<<myMatrix;
}
結果如下:
最後給出該程式的標頭檔案和原始檔
Matrix.h標頭檔案內容:
#ifndef MATRIX_H
#define MATRIX_H
#include <iostream>
namespace Seamanj
{
class Matrix
{
protected:
int Nrows,Ncols;
double *data;
public:
Matrix(int rows = 0,int cols = 0,const double *M = NULL);
Matrix(Matrix& m)//深度複製
{
Nrows=m.Nrows;
Ncols=m.Ncols;
data=new double[Nrows*Ncols];
for(int i=0;i<Nrows;i++)
for(int j=0;j<Ncols;j++)
(*this)(i,j)=m(i,j);
}
~Matrix();
void setNrows(int i){Nrows=i;}
void setNcols(int i){Ncols=i;}
int getNrows(){return Nrows;}
int getNcols(){return Ncols;}
double& operator()(int i,int j);
double getDetermination();
Matrix getSubmatrixByDeleting_i_row_j_col(int i,int j);
double getCofactor_i_j(int i,int j);
Matrix getCofactorMatrix();
Matrix getTranspose();
Matrix getInverseByAdjugate();
Matrix getInverseByGauss_Jordan_Elimination();
Matrix getInverseByLU_Decompose();
friend Matrix LU_Decompose(Matrix& m, int *index,double* detSign=NULL);
friend void LU_back_substitution(Matrix& m, int *index, double col[],double result[]);
Matrix operator*(double d);
Matrix operator=(Matrix& m);//深度賦值
friend Matrix operator*(double d,Matrix& m);
friend std::ostream& operator<<(std::ostream &os ,Matrix& m);
};
Matrix operator*(double d,Matrix& m);
}
#endif
Matrix.cpp原始檔內容:
#include "Matrix.h"
#include <iomanip>
#include <cmath>
using namespace std;
namespace Seamanj
{
Matrix::Matrix(int rows,int cols,const double *M)
{
if(rows < 0 || cols < 0 || ((rows == 0 || cols == 0) && cols != rows))//注意rows和cols可以同時為0
{
cerr << "Matrix size impossible (negative or zero rows or cols)" << endl;
exit(1);
}
Nrows=rows;
Ncols=cols;
data=new double[Nrows*Ncols];
if(!data)
{
cerr << "not enough memory to allocate " << rows << " x " << cols << " Matrix" << endl;
exit(1);
}
if(M)
{
for(int i=0,k=0;i<rows;i++)
for(int j=0;j<cols;j++)
data[i*rows+j]=M[k++];
}
}
Matrix::~Matrix()
{
delete []data;
}
double& Matrix::operator()(int i,int j)
{
if(i < 0 || i >= Nrows || j < 0 || j >= Ncols)
{
cerr << " Invalid entry for Matrix " << endl;
exit(0);
}
return data[i*Ncols+j];
}
Matrix Matrix::getInverseByGauss_Jordan_Elimination()
{
if(Nrows != Ncols || Nrows < 1)
{
cerr << "getgetInverseByGauss_Jordan_Elimination error"<<endl;
exit(-1);
}
Matrix m(Nrows,2*Ncols);
for(int i=0;i<m.Nrows;i++)//求增廣矩陣
for(int j=0;j<m.Ncols;j++)
{
if(j<Ncols)
m(i,j)=(*this)(i,j);
else if(j == i+Ncols)
m(i,j)=1;
else
m(i,j)=0;
}
for(int j=0;j<Ncols;j++)//對每列進行消元
{
double max=1e-6;
int maxrow=-1;
for(int i=j;i<Nrows;i++)//找出每列的最大絕對值的元素作為主元
{
if(abs(m(i,j))>max)
{
max=abs(m(i,j));
maxrow=i;
}
}
if(maxrow == -1)
{
cerr<<"This matrix isn't invertible"<<endl;
exit(-1);
}
if(maxrow != j)//換行
{
for(int k=j;k<m.Ncols;k++)
{
double temp;
temp=m(j,k);
m(j,k)=m(maxrow,k);
m(maxrow,k)=temp;
}
}
for(int k=m.Ncols-1;k>=j;k--)//與主元同行的元素(從主元到行末,因為主元前面是0元素,所以沒有必要除了)除以主元,注意是從後往前,這樣可以保持主元除自己之前保持不變
{
m(j,k)/=m(j,j);
}
for(int k=m.Ncols-1;k>=j;k--)//對每行從後往前進行消元
{
for(int l=0;l<m.Nrows;l++)
{
if(l!=j)
{
m(l,k)-=m(l,j)*m(j,k);
}
}
}
}
Matrix result(Nrows,Ncols);
for(int i=0;i<Nrows;i++)
for(int j=0;j<Ncols;j++)
result(i,j)=m(i,j+Ncols);
return result;
}
Matrix Matrix::getInverseByAdjugate()
{
if(Nrows != Ncols || Nrows < 1)
{
cerr << "getInverseByAdjugate error"<<endl;
exit(-1);
}
Matrix m=getCofactorMatrix();
m=m.getTranspose();
double d=getDetermination();
if(d < 1e-6 && d>-1e-6)
{
cerr<<"This matrix isn't invertible"<<endl;
exit(-1);
}
return m *(1/getDetermination());
}
Matrix Matrix::getCofactorMatrix()
{
Matrix cm(Nrows,Ncols);
for(int i=0;i<cm.getNrows();i++)
for(int j=0;j<cm.getNcols();j++)
cm(i,j)=getCofactor_i_j(i,j);
return cm;
}
double Matrix::getCofactor_i_j(int i,int j)
{
if( i < 0 || j < 0 || i >= Nrows || j >= Ncols || Nrows != Ncols)
{
cerr << "getCofactor_i_j error"<<endl;
exit(-1);
}
//double d=pow(-1.0,i+j) * getSubmatrixByDeleting_i_row_j_col(i,j).getDetermination();
//這樣寫是錯誤的,原因: getSubmatrixByDeleting_i_row_j_col(i,j)返回的是區域性的,呼叫完後會析構
Matrix m=getSubmatrixByDeleting_i_row_j_col(i,j);
double d=pow(-1.0,i+j) * m.getDetermination();
return d;
}
Matrix Matrix::getSubmatrixByDeleting_i_row_j_col(int i,int j)
{
if( i < 0 || j < 0 || i >= Nrows || j >= Ncols )
{
cerr << "getSubmatrixByDeleting_i_row_j_col error!"<<endl;
exit(-1);
}
Matrix sm(getNrows()-1,getNcols()-1);
for(int ii=0;ii<Nrows-1;ii++)
for(int jj=0;jj<Ncols-1;jj++)
{
if(ii < i && jj < j)
sm(ii,jj)=(*this)(ii,jj);
else if(ii < i && jj >= j)
sm(ii,jj)=(*this)(ii,jj+1);
else if(ii >= i && jj < j)
sm(ii,jj)=(*this)(ii+1,jj);
else if(ii >= i && jj >= j)
sm(ii,jj)=(*this)(ii+1,jj+1);
}
return sm;
}
double Matrix::getDetermination()
{
if( Nrows < 1 || Ncols < 1|| Nrows != Ncols)
{
cerr << "getDetermination error"<<endl;
exit(-1);
}
if(Nrows == 1)
return (*this)(0,0);
double sum=0.0;
for(int i=0;i<Ncols;i++)
{
sum+=(*this)(i,0)*getCofactor_i_j(i,0);
}
return sum;
}
Matrix Matrix::getTranspose()
{
if( Nrows < 1 || Ncols < 1)
{
cerr << "getTranspose error"<<endl;
exit(-1);
}
Matrix tm(Ncols,Nrows);
for(int i=0;i<Nrows;i++)
for(int j=0;j<Ncols;j++)
tm(j,i)=(*this)(i,j);
return tm;
}
Matrix LU_Decompose(Matrix& m, int *index,double* detSign)
{
double *rowNormalizer=new double[m.Nrows];
Matrix result(m);
double exchangeParity = 1.0;
//calulate a normalizer for each row
for(int i=0;i<result.Nrows;i++)
{
double maxvalue=0.0;
for(int j=0;j<result.Ncols;j++)
{
if(abs(result(i,j))>maxvalue)
maxvalue=abs(result(i,j));
}
if(maxvalue < 1e-6 && maxvalue > -1e-6)
{
cerr<<"This matrix isn't invertible"<<endl;
delete []rowNormalizer;
exit(-1);
}
rowNormalizer[i]=1.0/maxvalue;
index[i]=i;
}
//Perform decomposition
for(int j=0;j<result.Ncols;j++)
{
for(int i=0;i<j;i++)
{
double sum=result(i,j);
for(int k=0;k<i;k++)
sum-=result(i,k)*result(k,j);
result(i,j)=sum;
}
//Find pivot element
int pivotRow=-1;
double maxvalue=0.0;
for(int i=j;i<result.Nrows;i++)
{
double sum=result(i,j);
for(int k=0;k<j;k++)
sum-=result(i,k)*result(k,j);
result(i,j)=sum;//這裡sum已經存入m
sum=abs(sum)*rowNormalizer[i];
if(sum>maxvalue)
{
maxvalue=sum;
pivotRow=i;
}
}
if(pivotRow == -1)
{
cerr<<"This matrix isn't invertible"<<endl;
exit(-1);
}
if(pivotRow!=j)//Exchange rows
{
for(int k=0 ; k<m.Ncols;k++)
{
double temp=result(j,k);
result(j,k)=result(pivotRow,k);
result(pivotRow,k)=temp;
}
int temp=index[j];
index[j]=index[pivotRow];
index[pivotRow]=temp;
rowNormalizer[pivotRow]= rowNormalizer[j];//為什麼不交換?因為前面的已經用不到,所以不用交換
exchangeParity = -exchangeParity;
}
//Divide by pivot element
if(j != result.Nrows-1)
{
double denom = 1.0/result(j,j);
for(int i=j+1;i<result.Nrows;i++)
result(i,j)*=denom;
}
}
if(detSign)
*detSign=exchangeParity;
delete []rowNormalizer;
return result;
}
void LU_back_substitution(Matrix& m, int *index, double col[],double result_col[])
{
for(int i=0;i<m.Nrows;i++)
result_col[i]=col[index[i]];
//Perform forward substitution for Ly=col;
for(int i=0;i<m.Nrows;i++)
{
double sum=result_col[i];
for(int j=0;j<i;j++)
sum-=m(i,j)*result_col[j];
result_col[i]=sum;
}
//Perform backward substitution for Ux=y
for(int i=m.Nrows-1;i>=0;i--)
{
double sum=result_col[i];
for(int j=i+1;j<m.Ncols;j++)
sum-=m(i,j)*result_col[j];
result_col[i]=sum/m(i,i);
}
}
Matrix Matrix::getInverseByLU_Decompose()
{
if(Nrows != Ncols || Nrows < 1)
{
cerr << "getInverseByLU_Decompose error"<<endl;
exit(-1);
}
int* index=new int[Nrows];
double* col=new double[Nrows];
double* result_col=new double[Nrows];
Matrix m= LU_Decompose(*this,index);
Matrix result(Nrows,Ncols);
for(int j=0;j<Ncols;j++)//設定為單位矩陣的每一列
{
for(int i=0;i<Nrows;i++)
if(j==i)
col[i]=1.0;
else
col[i]=0.0;
LU_back_substitution(m,index,col,result_col);
for(int i=0;i<Nrows;i++)
result(i,j)=result_col[i];
}
delete []index;
delete []col;
delete []result_col;
return result;
}
Matrix Matrix::operator=(Matrix& m)
{
Nrows=m.Nrows;
Ncols=m.Ncols;
data=new double[Nrows*Ncols];
for(int i=0;i<Nrows;i++)
for(int j=0;j<Ncols;j++)
(*this)(i,j)=m(i,j);
return *this;
}
Matrix Matrix::operator*(double d)
{
Matrix m(Nrows,Ncols);
for(int i=0;i<Nrows;i++)
for(int j=0;j<Ncols;j++)
m(i,j)=(*this)(i,j)*d;
return m;
}
Matrix operator*(double d,Matrix& m)//定義友元的時候不能加friend,只有在類裡宣告友元函式時才能加friend
{
Matrix result(m.getNrows(),m.getNcols());
for(int i=0;i<m.getNrows();i++)
for(int j=0;j<m.getNcols();j++)
result(i,j)=m(i,j)*d;
return result;
}
ostream& operator<<(ostream &os,Matrix& m)
{
for(int i=0;i<m.Nrows;i++)
{
for(int j=0;j<m.Ncols;j++)
os<<setw(10)<<((m(i,j)<1e-6 && m(i,j)>-1e-6)?0.0:m(i,j))<<'\t';
os<<endl;
}
return os;
}
}
void main()
{
double m_try[9] = {1,2,3,2,4,5,3,5,6};
Seamanj::Matrix myMatrix(3,3,m_try);
cout << "Origin Matrix:" << endl << myMatrix << endl ;
myMatrix=myMatrix.getInverseByAdjugate();
cout << "After inversing ByAdjugate:"<<endl<<myMatrix;
myMatrix=myMatrix.getInverseByGauss_Jordan_Elimination();
cout << "After inversing ByGauss_Jordan_Elimination:"<<endl<<myMatrix;
myMatrix=myMatrix.getInverseByLU_Decompose();
cout<< "After inversing ByLU_Decompose:"<<endl<<myMatrix;
}
好了,今天就到這裡,下個專題準備講下四元組與旋轉,敬請期待喲!