1. 程式人生 > >機器學習專業英語單詞

機器學習專業英語單詞

  • [1 ] intensity 強度
  • [2 ] Regression 迴歸
  • [3 ] Loss function 損失函式
  • [4 ] non-convex 非凸函式
  • [5 ] neural network 神經網路
  • [ ] supervised learning 監督學習
  • [ ] regression problem 迴歸問題處理的是連續的問題
  • [ ] classification problem 分類問題處理的問題是離散的而不是連續的
    迴歸問題和分類問題的區別應該在於 迴歸問題的結果是連續的,分類問題的結果是離散的。
  • [ ] discreet value 離散值
  • [ ] support vector machines 支援向量機,用來處理分類演算法中輸入的維度不單一的情況(甚至輸入維度為無窮)
  • [ ] learning theory 學習理論
  • [ ] learning algorithms 學習演算法
  • [ ] unsupervised learning 無監督學習
  • [ ] gradient descent 梯度下降
  • [ ] linear regression 線性迴歸
  • [ ] Neural Network 神經網路
  • [ ] gradient descent 梯度下降 監督學習的一種演算法,用來擬合的演算法
  • [ ] normal equations
  • [ ] linear algebra 線性代數 原諒我英語不太好
  • [ ] superscript上標
  • [ ] exponentiation 指數
  • [ ] training set 訓練集合
  • [ ] training example 訓練樣本
  • [ ] hypothesis 假設,用來表示學習演算法的輸出,叫我們不要太糾結H的意思,因為這只是歷史的慣例
  • [ ] LMS algorithm “least mean squares” 最小二乘法演算法
  • [ ] batch gradient descent 批量梯度下降,因為每次都會計算 最小擬合的方差,所以運算慢
  • [ ] constantly gradient descent 字幕組翻譯成“隨機梯度下降” 我怎麼覺得是“常量梯度下降”也就是梯度下降的運算次數不變,一般比批量梯度下降速度快,但是通常不是那麼準確
  • [ ] iterative algorithm 迭代演算法
  • [ ] partial derivative 偏導數
  • [ ] contour 等高線
  • [ ] quadratic function 二元函式
  • [ ] locally weighted regression區域性加權迴歸
  • [ ] underfitting欠擬合
  • [ ] overfitting 過擬合
  • [ ] non-parametric learning algorithms 無引數學習演算法
  • [ ] parametric learning algorithm 引數學習演算法
  • [ ] other

  • [ ] activation 啟用值

  • [ ] activation function 啟用函式
  • [ ] additive noise 加性噪聲
  • [ ] autoencoder 自編碼器
  • [ ] Autoencoders 自編碼演算法
  • [ ] average firing rate 平均啟用率
  • [ ] average sum-of-squares error 均方差
  • [ ] backpropagation 後向傳播
  • [ ] basis 基
  • [ ] basis feature vectors 特徵基向量
  • [50 ] batch gradient ascent 批量梯度上升法
  • [ ] Bayesian regularization method 貝葉斯規則化方法
  • [ ] Bernoulli random variable 伯努利隨機變數
  • [ ] bias term 偏置項
  • [ ] binary classfication 二元分類
  • [ ] class labels 型別標記
  • [ ] concatenation 級聯
  • [ ] conjugate gradient 共軛梯度
  • [ ] contiguous groups 聯通區域
  • [ ] convex optimization software 凸優化軟體
  • [ ] convolution 卷積
  • [ ] cost function 代價函式
  • [ ] covariance matrix 協方差矩陣
  • [ ] DC component 直流分量
  • [ ] decorrelation 去相關
  • [ ] degeneracy 退化
  • [ ] demensionality reduction 降維
  • [ ] derivative 導函式
  • [ ] diagonal 對角線
  • [ ] diffusion of gradients 梯度的彌散
  • [ ] eigenvalue 特徵值
  • [ ] eigenvector 特徵向量
  • [ ] error term 殘差
  • [ ] feature matrix 特徵矩陣
  • [ ] feature standardization 特徵標準化
  • [ ] feedforward architectures 前饋結構演算法
  • [ ] feedforward neural network 前饋神經網路
  • [ ] feedforward pass 前饋傳導
  • [ ] fine-tuned 微調
  • [ ] first-order feature 一階特徵
  • [ ] forward pass 前向傳導
  • [ ] forward propagation 前向傳播
  • [ ] Gaussian prior 高斯先驗概率
  • [ ] generative model 生成模型
  • [ ] gradient descent 梯度下降
  • [ ] Greedy layer-wise training 逐層貪婪訓練方法
  • [ ] grouping matrix 分組矩陣
  • [ ] Hadamard product 阿達馬乘積
  • [ ] Hessian matrix Hessian 矩陣
  • [ ] hidden layer 隱含層
  • [ ] hidden units 隱藏神經元
  • [ ] Hierarchical grouping 層次型分組
  • [ ] higher-order features 更高階特徵
  • [ ] highly non-convex optimization problem 高度非凸的優化問題
  • [ ] histogram 直方圖
  • [ ] hyperbolic tangent 雙曲正切函式
  • [ ] hypothesis 估值,假設
  • [ ] identity activation function 恆等激勵函式
  • [ ] IID 獨立同分布
  • [ ] illumination 照明
  • [100 ] inactive 抑制
  • [ ] independent component analysis 獨立成份分析
  • [ ] input domains 輸入域
  • [ ] input layer 輸入層
  • [ ] intensity 亮度/灰度
  • [ ] intercept term 截距
  • [ ] KL divergence 相對熵
  • [ ] KL divergence KL分散度
  • [ ] k-Means K-均值
  • [ ] learning rate 學習速率
  • [ ] least squares 最小二乘法
  • [ ] linear correspondence 線性響應
  • [ ] linear superposition 線性疊加
  • [ ] line-search algorithm 線搜尋演算法
  • [ ] local mean subtraction 區域性均值消減
  • [ ] local optima 區域性最優解
  • [ ] logistic regression 邏輯迴歸
  • [ ] loss function 損失函式
  • [ ] low-pass filtering 低通濾波
  • [ ] magnitude 幅值
  • [ ] MAP 極大後驗估計
  • [ ] maximum likelihood estimation 極大似然估計
  • [ ] mean 平均值
  • [ ] MFCC Mel 倒頻係數
  • [ ] multi-class classification 多元分類
  • [ ] neural networks 神經網路
  • [ ] neuron 神經元
  • [ ] Newton’s method 牛頓法
  • [ ] non-convex function 非凸函式
  • [ ] non-linear feature 非線性特徵
  • [ ] norm 正規化
  • [ ] norm bounded 有界範數
  • [ ] norm constrained 範數約束
  • [ ] normalization 歸一化
  • [ ] numerical roundoff errors 數值舍入誤差
  • [ ] numerically checking 數值檢驗
  • [ ] numerically reliable 數值計算上穩定
  • [ ] object detection 物體檢測
  • [ ] objective function 目標函式
  • [ ] off-by-one error 缺位錯誤
  • [ ] orthogonalization 正交化
  • [ ] output layer 輸出層
  • [ ] overall cost function 總體代價函式
  • [ ] over-complete basis 超完備基
  • [ ] over-fitting 過擬合
  • [ ] parts of objects 目標的部件
  • [ ] part-whole decompostion 部分-整體分解
  • [ ] PCA 主元分析
  • [ ] penalty term 懲罰因子
  • [ ] per-example mean subtraction 逐樣本均值消減
  • [150 ] pooling 池化
  • [ ] pretrain 預訓練
  • [ ] principal components analysis 主成份分析
  • [ ] quadratic constraints 二次約束
  • [ ] RBMs 受限Boltzman機
  • [ ] reconstruction based models 基於重構的模型
  • [ ] reconstruction cost 重建代價
  • [ ] reconstruction term 重構項
  • [ ] redundant 冗餘
  • [ ] reflection matrix 反射矩陣
  • [ ] regularization 正則化
  • [ ] regularization term 正則化項
  • [ ] rescaling 縮放
  • [ ] robust 魯棒性
  • [ ] run 行程
  • [ ] second-order feature 二階特徵
  • [ ] sigmoid activation function S型激勵函式
  • [ ] significant digits 有效數字
  • [ ] singular value 奇異值
  • [ ] singular vector 奇異向量
  • [ ] smoothed L1 penalty 平滑的L1範數懲罰
  • [ ] Smoothed topographic L1 sparsity penalty 平滑地形L1稀疏懲罰函式
  • [ ] smoothing 平滑
  • [ ] Softmax Regresson Softmax迴歸
  • [ ] sorted in decreasing order 降序排列
  • [ ] source features 源特徵
  • [ ] sparse autoencoder 消減歸一化
  • [ ] Sparsity 稀疏性
  • [ ] sparsity parameter 稀疏性引數
  • [ ] sparsity penalty 稀疏懲罰
  • [ ] square function 平方函式
  • [ ] squared-error 方差
  • [ ] stationary 平穩性(不變性)
  • [ ] stationary stochastic process 平穩隨機過程
  • [ ] step-size 步長值
  • [ ] supervised learning 監督學習
  • [ ] symmetric positive semi-definite matrix 對稱半正定矩陣
  • [ ] symmetry breaking 對稱失效
  • [ ] tanh function 雙曲正切函式
  • [ ] the average activation 平均活躍度
  • [ ] the derivative checking method 梯度驗證方法
  • [ ] the empirical distribution 經驗分佈函式
  • [ ] the energy function 能量函式
  • [ ] the Lagrange dual 拉格朗日對偶函式
  • [ ] the log likelihood 對數似然函式
  • [ ] the pixel intensity value 畫素灰度值
  • [ ] the rate of convergence 收斂速度
  • [ ] topographic cost term 拓撲代價項
  • [ ] topographic ordered 拓撲秩序
  • [ ] transformation 變換
  • [200 ] translation invariant 平移不變性
  • [ ] trivial answer 平凡解
  • [ ] under-complete basis 不完備基
  • [ ] unrolling 組合擴充套件
  • [ ] unsupervised learning 無監督學習
  • [ ] variance 方差
  • [ ] vecotrized implementation 向量化實現
  • [ ] vectorization 向量化
  • [ ] visual cortex 視覺皮層
  • [ ] weight decay 權重衰減
  • [ ] weighted average 加權平均值
  • [ ] whitening 白化
  • [ ] zero-mean 均值為零

  • [ ] Letter A

  • [ ] Accumulated error backpropagation 累積誤差逆傳播

  • [ ] Activation Function 啟用函式
  • [ ] Adaptive Resonance Theory/ART 自適應諧振理論
  • [ ] Addictive model 加性學習
  • [ ] Adversarial Networks 對抗網路
  • [ ] Affine Layer 仿射層
  • [ ] Affinity matrix 親和矩陣
  • [ ] Agent 代理 / 智慧體
  • [ ] Algorithm 演算法
  • [ ] Alpha-beta pruning α-β剪枝
  • [ ] Anomaly detection 異常檢測
  • [ ] Approximation 近似
  • [ ] Area Under ROC Curve/AUC Roc 曲線下面積
  • [ ] Artificial General Intelligence/AGI 通用人工智慧
  • [ ] Artificial Intelligence/AI 人工智慧
  • [ ] Association analysis 關聯分析
  • [ ] Attention mechanism 注意力機制
  • [ ] Attribute conditional independence assumption 屬性條件獨立性假設
  • [ ] Attribute space 屬性空間
  • [ ] Attribute value 屬性值
  • [ ] Autoencoder 自編碼器
  • [ ] Automatic speech recognition 自動語音識別
  • [ ] Automatic summarization 自動摘要
  • [ ] Average gradient 平均梯度
  • [ ] Average-Pooling 平均池化

  • [ ] Letter B

  • [ ] Backpropagation Through Time 通過時間的反向傳播

  • [ ] Backpropagation/BP 反向傳播
  • [ ] Base learner 基學習器
  • [ ] Base learning algorithm 基學習演算法
  • [ ] Batch Normalization/BN 批量歸一化
  • [ ] Bayes decision rule 貝葉斯判定準則
  • [250 ] Bayes Model Averaging/BMA 貝葉斯模型平均
  • [ ] Bayes optimal classifier 貝葉斯最優分類器
  • [ ] Bayesian decision theory 貝葉斯決策論
  • [ ] Bayesian network 貝葉斯網路
  • [ ] Between-class scatter matrix 類間散度矩陣
  • [ ] Bias 偏置 / 偏差
  • [ ] Bias-variance decomposition 偏差-方差分解
  • [ ] Bias-Variance Dilemma 偏差 – 方差困境
  • [ ] Bi-directional Long-Short Term Memory/Bi-LSTM 雙向長短期記憶
  • [ ] Binary classification 二分類
  • [ ] Binomial test 二項檢驗
  • [ ] Bi-partition 二分法
  • [ ] Boltzmann machine 玻爾茲曼機
  • [ ] Bootstrap sampling 自助取樣法/可重複取樣/有放回取樣
  • [ ] Bootstrapping 自助法
  • [ ] Break-Event Point/BEP 平衡點

  • [ ] Letter C

  • [ ] Calibration 校準

  • [ ] Cascade-Correlation 級聯相關
  • [ ] Categorical attribute 離散屬性
  • [ ] Class-conditional probability 類條件概率
  • [ ] Classification and regression tree/CART 分類與迴歸樹
  • [ ] Classifier 分類器
  • [ ] Class-imbalance 類別不平衡
  • [ ] Closed -form 閉式
  • [ ] Cluster 簇/類/叢集
  • [ ] Cluster analysis 聚類分析
  • [ ] Clustering 聚類
  • [ ] Clustering ensemble 聚類整合
  • [ ] Co-adapting 共適應
  • [ ] Coding matrix 編碼矩陣
  • [ ] COLT 國際學習理論會議
  • [ ] Committee-based learning 基於委員會的學習
  • [ ] Competitive learning 競爭型學習
  • [ ] Component learner 元件學習器
  • [ ] Comprehensibility 可解釋性
  • [ ] Computation Cost 計算成本
  • [ ] Computational Linguistics 計算語言學
  • [ ] Computer vision 計算機視覺
  • [ ] Concept drift 概念漂移
  • [ ] Concept Learning System /CLS 概念學習系統
  • [ ] Conditional entropy 條件熵
  • [ ] Conditional mutual information 條件互資訊
  • [ ] Conditional Probability Table/CPT 條件概率表
  • [ ] Conditional random field/CRF 條件隨機場
  • [ ] Conditional risk 條件風險
  • [ ] Confidence 置信度
  • [ ] Confusion matrix 混淆矩陣
  • [300 ] Connection weight 連線權
  • [ ] Connectionism 連結主義
  • [ ] Consistency 一致性/相合性
  • [ ] Contingency table 列聯表
  • [ ] Continuous attribute 連續屬性
  • [ ] Convergence 收斂
  • [ ] Conversational agent 會話智慧體
  • [ ] Convex quadratic programming 凸二次規劃
  • [ ] Convexity 凸性
  • [ ] Convolutional neural network/CNN 卷積神經網路
  • [ ] Co-occurrence 同現
  • [ ] Correlation coefficient 相關係數
  • [ ] Cosine similarity 餘弦相似度
  • [ ] Cost curve 成本曲線
  • [ ] Cost Function 成本函式
  • [ ] Cost matrix 成本矩陣
  • [ ] Cost-sensitive 成本敏感
  • [ ] Cross entropy 交叉熵
  • [ ] Cross validation 交叉驗證
  • [ ] Crowdsourcing 眾包
  • [ ] Curse of dimensionality 維數災難
  • [ ] Cut point 截斷點
  • [ ] Cutting plane algorithm 割平面法

  • [ ] Letter D

  • [ ] Data mining 資料探勘

  • [ ] Data set 資料集
  • [ ] Decision Boundary 決策邊界
  • [ ] Decision stump 決策樹樁
  • [ ] Decision tree 決策樹/判定樹
  • [ ] Deduction 演繹
  • [ ] Deep Belief Network 深度信念網路
  • [ ] Deep Convolutional Generative Adversarial Network/DCGAN 深度卷積生成對抗網路
  • [ ] Deep learning 深度學習
  • [ ] Deep neural network/DNN 深度神經網路
  • [ ] Deep Q-Learning 深度 Q 學習
  • [ ] Deep Q-Network 深度 Q 網路
  • [ ] Density estimation 密度估計
  • [ ] Density-based clustering 密度聚類
  • [ ] Differentiable neural computer 可微分神經計算機
  • [ ] Dimensionality reduction algorithm 降維演算法
  • [ ] Directed edge 有向邊
  • [ ] Disagreement measure 不合度量
  • [ ] Discriminative model 判別模型
  • [ ] Discriminator 判別器
  • [ ] Distance measure 距離度量
  • [ ] Distance metric learning 距離度量學習
  • [ ] Distribution 分佈
  • [ ] Divergence 散度
  • [350 ] Diversity measure 多樣性度量/差異性度量
  • [ ] Domain adaption 領域自適應
  • [ ] Downsampling 下采樣
  • [ ] D-separation (Directed separation) 有向分離
  • [ ] Dual problem 對偶問題
  • [ ] Dummy node 啞結點
  • [ ] Dynamic Fusion 動態融合
  • [ ] Dynamic programming 動態規劃

  • [ ] Letter E

  • [ ] Eigenvalue decomposition 特徵值分解

  • [ ] Embedding 嵌入
  • [ ] Emotional analysis 情緒分析
  • [ ] Empirical conditional entropy 經驗條件熵
  • [ ] Empirical entropy 經驗熵
  • [ ] Empirical error 經驗誤差
  • [ ] Empirical risk 經驗風險
  • [ ] End-to-End 端到端
  • [ ] Energy-based model 基於能量的模型
  • [ ] Ensemble learning 整合學習
  • [ ] Ensemble pruning 整合修剪
  • [ ] Error Correcting Output Codes/ECOC 糾錯輸出碼
  • [ ] Error rate 錯誤率
  • [ ] Error-ambiguity decomposition 誤差-分歧分解
  • [ ] Euclidean distance 歐氏距離
  • [ ] Evolutionary computation 演化計算
  • [ ] Expectation-Maximization 期望最大化
  • [ ] Expected loss 期望損失
  • [ ] Exploding Gradient Problem 梯度爆炸問題
  • [ ] Exponential loss function 指數損失函式
  • [ ] Extreme Learning Machine/ELM 超限學習機

  • [ ] Letter F

  • [ ] Factorization 因子分解

  • [ ] False negative 假負類
  • [ ] False positive 假正類
  • [ ] False Positive Rate/FPR 假正例率
  • [ ] Feature engineering 特徵工程
  • [ ] Feature selection 特徵選擇
  • [ ] Feature vector 特徵向量
  • [ ] Featured Learning 特徵學習
  • [ ] Feedforward Neural Networks/FNN 前饋神經網路
  • [ ] Fine-tuning 微調
  • [ ] Flipping output 翻轉法
  • [ ] Fluctuation 震盪
  • [ ] Forward stagewise algorithm 前向分步演算法
  • [ ] Frequentist 頻率主義學派
  • [ ] Full-rank matrix 滿秩矩陣
  • [400 ] Functional neuron 功能神經元

  • [ ] Letter G

  • [ ] Gain ratio 增益率

  • [ ] Game theory 博弈論
  • [ ] Gaussian kernel function 高斯核函式
  • [ ] Gaussian Mixture Model 高斯混合模型
  • [ ] General Problem Solving 通用問題求解
  • [ ] Generalization 泛化
  • [ ] Generalization error 泛化誤差
  • [ ] Generalization error bound 泛化誤差上界
  • [ ] Generalized Lagrange function 廣義拉格朗日函式
  • [ ] Generalized linear model 廣義線性模型
  • [ ] Generalized Rayleigh quotient 廣義瑞利商
  • [ ] Generative Adversarial Networks/GAN 生成對抗網路
  • [ ] Generative Model 生成模型
  • [ ] Generator 生成器
  • [ ] Genetic Algorithm/GA 遺傳演算法
  • [ ] Gibbs sampling 吉布斯取樣
  • [ ] Gini index 基尼指數
  • [ ] Global minimum 全域性最小
  • [ ] Global Optimization 全域性優化
  • [ ] Gradient boosting 梯度提升
  • [ ] Gradient Descent 梯度下降
  • [ ] Graph theory 圖論
  • [ ] Ground-truth 真相/真實

  • [ ] Letter H

  • [ ] Hard margin 硬間隔

  • [ ] Hard voting 硬投票
  • [ ] Harmonic mean 調和平均
  • [ ] Hesse matrix 海塞矩陣
  • [ ] Hidden dynamic model 隱動態模型
  • [ ] Hidden layer 隱藏層
  • [ ] Hidden Markov Model/HMM 隱馬爾可夫模型
  • [ ] Hierarchical clustering 層次聚類
  • [ ] Hilbert space 希爾伯特空間
  • [ ] Hinge loss function 合頁損失函式
  • [ ] Hold-out 留出法
  • [ ] Homogeneous 同質
  • [ ] Hybrid computing 混合計算
  • [ ] Hyperparameter 超引數
  • [ ] Hypothesis 假設
  • [ ] Hypothesis test 假設驗證

  • [ ] Letter I

  • [ ] ICML 國際機器學習會議

  • [450 ] Improved iterative scaling/IIS 改進的迭代尺度法
  • [ ] Incremental learning 增量學習
  • [ ] Independent and identically distributed/i.i.d. 獨立同分布
  • [ ] Independent Component Analysis/ICA 獨立成分分析
  • [ ] Indicator function 指示函式
  • [ ] Individual learner 個體學習器
  • [ ] Induction 歸納
  • [ ] Inductive bias 歸納偏好
  • [ ] Inductive learning 歸納學習
  • [ ] Inductive Logic Programming/ILP 歸納邏輯程式設計
  • [ ] Information entropy 資訊熵
  • [ ] Information gain 資訊增益
  • [ ] Input layer 輸入層
  • [ ] Insensitive loss 不敏感損失
  • [ ] Inter-cluster similarity 簇間相似度
  • [ ] International Conference for Machine Learning/ICML 國際機器學習大會
  • [ ] Intra-cluster similarity 簇內相似度
  • [ ] Intrinsic value 固有值
  • [ ] Isometric Mapping/Isomap 等度量對映
  • [ ] Isotonic regression 等分迴歸
  • [ ] Iterative Dichotomiser 迭代二分器

  • [ ] Letter K

  • [ ] Kernel method 核方法

  • [ ] Kernel trick 核技巧
  • [ ] Kernelized Linear Discriminant Analysis/KLDA 核線性判別分析
  • [ ] K-fold cross validation k 折交叉驗證/k 倍交叉驗證
  • [ ] K-Means Clustering K – 均值聚類
  • [ ] K-Nearest Neighbours Algorithm/KNN K近鄰演算法
  • [ ] Knowledge base 知識庫
  • [ ] Knowledge Representation 知識表徵

  • [ ] Letter L

  • [ ] Label space 標記空間

  • [ ] Lagrange duality 拉格朗日對偶性
  • [ ] Lagrange multiplier 拉格朗日乘子
  • [ ] Laplace smoothing 拉普拉斯平滑
  • [ ] Laplacian correction 拉普拉斯修正
  • [ ] Latent Dirichlet Allocation 隱狄利克雷分佈
  • [ ] Latent semantic analysis 潛在語義分析
  • [ ] Latent variable 隱變數
  • [ ] Lazy learning 懶惰學習
  • [ ] Learner 學習器
  • [ ] Learning by analogy 類比學習
  • [ ] Learning rate 學習率
  • [ ] Learning Vector Quantization/LVQ 學習向量量化
  • [ ] Least squares regression tree 最小二乘迴歸樹
  • [ ] Leave-One-Out/LOO 留一法
  • [500 ] linear chain conditional random field 線性鏈條件隨機場
  • [ ] Linear Discriminant Analysis/LDA 線性判別分析
  • [ ] Linear model 線性模型
  • [ ] Linear Regression 線性迴歸
  • [ ] Link function 聯絡函式
  • [ ] Local Markov property 區域性馬爾可夫性
  • [ ] Local minimum 區域性最小
  • [ ] Log likelihood 對數似然
  • [ ] Log odds/logit 對數機率
  • [ ] Logistic Regression Logistic 迴歸
  • [ ] Log-likelihood 對數似然
  • [ ] Log-linear regression 對數線性迴歸
  • [ ] Long-Short Term Memory/LSTM 長短期記憶
  • [ ] Loss function 損失函式

  • [ ] Letter M

  • [ ] Machine translation/MT 機器翻譯

  • [ ] Macron-P 巨集查準率
  • [ ] Macron-R 巨集查全率
  • [ ] Majority voting 絕對多數投票法
  • [ ] Manifold assumption 流形假設
  • [ ] Manifold learning 流形學習
  • [ ] Margin theory 間隔理論
  • [ ] Marginal distribution 邊際分佈
  • [ ] Marginal independence 邊際獨立性
  • [ ] Marginalization 邊際化
  • [ ] Markov Chain Monte Carlo/MCMC 馬爾可夫鏈蒙特卡羅方法
  • [ ] Markov Random Field 馬爾可夫隨機場
  • [ ] Maximal clique 最大團
  • [ ] Maximum Likelihood Estimation/MLE 極大似然估計/極大似然法
  • [ ] Maximum margin 最大間隔
  • [ ] Maximum weighted spanning tree 最大帶權生成樹
  • [ ] Max-Pooling 最大池化
  • [ ] Mean squared error 均方誤差
  • [ ] Meta-learner 元學習器
  • [ ] Metric learning 度量學習
  • [ ] Micro-P 微查準率
  • [ ] Micro-R 微查全率
  • [ ] Minimal Description Length/MDL 最小描述長度
  • [ ] Minimax game 極小極大博弈
  • [ ] Misclassification cost 誤分類成本
  • [ ] Mixture of experts 混合專家
  • [ ] Momentum 動量
  • [ ] Moral graph 道德圖/端正圖
  • [ ] Multi-class classification 多分類
  • [ ] Multi-document summarization 多文件摘要
  • [ ] Multi-layer feedforward neural networks 多層前饋神經網路
  • [ ] Multilayer Perceptron/MLP 多層感知器
  • [ ] Multimodal learning 多模態學習
  • [550 ] Multiple Dimensional Scaling 多維縮放
  • [ ] Multiple linear regression 多元線性迴歸
  • [ ] Multi-response Linear Regression /MLR 多響應線性迴歸
  • [ ] Mutual information 互資訊

  • [ ] Letter N

  • [ ] Naive bayes 樸素貝葉斯

  • [ ] Naive Bayes Classifier 樸素貝葉斯分類器
  • [ ] Named entity recognition 命名實體識別
  • [ ] Nash equilibrium 納什均衡
  • [ ] Natural language generation/NLG 自然語言生成
  • [ ] Natural language processing 自然語言處理
  • [ ] Negative class 負類
  • [ ] Negative correlation 負相關法
  • [ ] Negative Log Likelihood 負對數似然
  • [ ] Neighbourhood Component Analysis/NCA 近鄰成分分析
  • [ ] Neural Machine Translation 神經機器翻譯
  • [ ] Neural Turing Machine 神經圖靈機
  • [ ] Newton method 牛頓法
  • [ ] NIPS 國際神經資訊處理系統會議
  • [ ] No Free Lunch Theorem/NFL 沒有免費的午餐定理
  • [ ] Noise-contrastive estimation 噪音對比估計
  • [ ] Nominal attribute 列名屬性
  • [ ] Non-convex optimization 非凸優化
  • [ ] Nonlinear model 非線性模型
  • [ ] Non-metric distance 非度量距離
  • [ ] Non-negative matrix factorization 非負矩陣分解
  • [ ] Non-ordinal attribute 無序屬性
  • [ ] Non-Saturating Game 非飽和博弈
  • [ ] Norm 範數
  • [ ] Normalization 歸一化
  • [ ] Nuclear norm 核範數
  • [ ] Numerical attribute 數值屬性

  • [ ] Letter O

  • [ ] Objective function 目標函式

  • [ ] Oblique decision tree 斜決策樹
  • [ ] Occam’s razor 奧卡姆剃刀
  • [ ] Odds 機率
  • [ ] Off-Policy 離策略
  • [ ] One shot learning 一次性學習
  • [ ] One-Dependent Estimator/ODE 獨依賴估計
  • [ ] On-Policy 在策略
  • [ ] Ordinal attribute 有序屬性
  • [ ] Out-of-bag estimate 包外估計
  • [ ] Output layer 輸出層
  • [ ] Output smearing 輸出調製法
  • [ ] Overfitting 過擬合/過配
  • [600 ] Oversampling 過取樣

  • [ ] Letter P

  • [ ] Paired t-test 成對 t 檢驗

  • [ ] Pairwise 成對型
  • [ ] Pairwise Markov property 成對馬爾可夫性
  • [ ] Parameter 引數
  • [ ] Parameter estimation 引數估計
  • [ ] Parameter tuning 調參
  • [ ] Parse tree 解析樹
  • [ ] Particle Swarm Optimization/PSO 粒子群優化演算法
  • [ ] Part-of-speech tagging 詞性標註
  • [ ] Perceptron 感知機
  • [ ] Performance measure 效能度量
  • [ ] Plug and Play Generative Network 即插即用生成網路
  • [ ] Plurality voting 相對多數投票法
  • [ ] Polarity detection 極性檢測
  • [ ] Polynomial kernel function 多項式核函式
  • [ ] Pooling 池化
  • [ ] Positive class 正類
  • [ ] Positive definite matrix 正定矩陣
  • [ ] Post-hoc test 後續檢驗
  • [ ] Post-pruning 後剪枝
  • [ ] potential function 勢函式
  • [ ] Precision 查準率/準確率
  • [ ] Prepruning 預剪枝
  • [ ] Principal component analysis/PCA 主成分分析
  • [ ] Principle of multiple explanations 多釋原則
  • [ ] Prior 先驗
  • [ ] Probability Graphical Model 概率圖模型
  • [ ] Proximal Gradient Descent/PGD 近端梯度下降
  • [ ] Pruning 剪枝
  • [ ] Pseudo-label 偽標記

  • [ ] Letter Q

  • [ ] Quantized Neural Network 量子化神經網路

  • [ ] Quantum computer 量子計算機
  • [ ] Quantum Computing 量子計算
  • [ ] Quasi Newton method 擬牛頓法

  • [ ] Letter R

  • [ ] Radial Basis Function/RBF 徑向基函式

  • [ ] Random Forest Algorithm 隨機森林演算法
  • [ ] Random walk 隨機漫步
  • [ ] Recall 查全率/召回率
  • [ ] Receiver Operating Characteristic/ROC 受試者工作特徵
  • [ ] Rectified Linear Unit/ReLU 線性修正單元
  • [650 ] Recurrent Neural Network 迴圈神經網路
  • [ ] Recursive neural network 遞迴神經網路
  • [ ] Reference model 參考模型
  • [ ] Regression 迴歸
  • [ ] Regularization 正則化
  • [ ] Reinforcement learning/RL 強化學習
  • [ ] Representation learning 表徵學習
  • [ ] Representer theorem 表示定理
  • [ ] reproducing kernel Hilbert space/RKHS 再生核希爾伯特空間
  • [ ] Re-sampling 重取樣法
  • [ ] Rescaling 再縮放
  • [ ] Residual Mapping 殘差對映
  • [ ] Residual Network 殘差網路
  • [ ] Restricted Boltzmann Machine/RBM 受限玻爾茲曼機
  • [ ] Restricted Isometry Property/RIP 限定等距性
  • [ ] Re-weighting 重賦權法
  • [ ] Robustness 穩健性/魯棒性
  • [ ] Root node 根結點
  • [ ] Rule Engine 規則引擎
  • [ ] Rule learning 規則學習

  • [ ] Letter S

  • [ ] Saddle point 鞍點

  • [ ] Sample space 樣本空間
  • [ ] Sampling 取樣
  • [ ] Score function 評分函式
  • [ ] Self-Driving 自動駕駛
  • [ ] Self-Organizing Map/SOM 自組織對映
  • [ ] Semi-naive Bayes classifiers 半樸素貝葉斯分類器
  • [ ] Semi-Supervised Learning 半監督學習
  • [ ] semi-Supervised Support Vector Machine 半監督支援向量機
  • [ ] Sentiment analysis 情感分析
  • [ ] Separating hyperplane 分離超平面
  • [ ] Sigmoid function Sigmoid 函式
  • [ ] Similarity measure 相似度度量
  • [ ] Simulated annealing 模擬退火
  • [ ] Simultaneous localization and mapping 同步定位與地圖構建
  • [ ] Singular Value Decomposition 奇異值分解
  • [ ] Slack variables 鬆弛變數
  • [ ] Smoothing 平滑
  • [ ] Soft margin 軟間隔
  • [ ] Soft margin maximization 軟間隔最大化
  • [ ] Soft voting 軟投票
  • [ ] Sparse representation 稀疏表徵
  • [ ] Sparsity 稀疏性
  • [ ] Specialization 特化
  • [ ] Spectral Clustering 譜聚類
  • [ ] Speech Recognition 語音識別
  • [ ] Splitting variable 切分變數
  • [700 ] Squashing function 擠壓函式
  • [ ] Stability-plasticity dilemma 可塑性-穩定性困境
  • [ ] Statistical learning 統計學習
  • [ ] Status feature function 狀態特徵函
  • [ ] Stochastic gradient descent 隨機梯度下降
  • [ ] Stratified sampling 分層取樣
  • [ ] Structural risk 結構風險
  • [ ] Structural risk minimization/SRM 結構風險最小化
  • [ ] Subspace 子空間
  • [ ] Supervised learning 監督學習/有導師學習
  • [ ] support vector expansion 支援向量展式
  • [ ] Support Vector Machine/SVM 支援向量機
  • [ ] Surrogat loss 替代損失
  • [ ] Surrogate function 替代函式
  • [ ] Symbolic learning 符號學習
  • [ ] Symbolism 符號主義
  • [ ] Synset 同義詞集

  • [ ] Letter T

  • [ ] T-Distribution Stochastic Neighbour Embedding/t-SNE T – 分佈隨機近鄰嵌入

  • [ ] Tensor 張量
  • [ ] Tensor Processing Units/TPU 張量處理單元
  • [ ] The least square method 最小二乘法
  • [ ] Threshold 閾值
  • [ ] Threshold logic unit 閾值邏輯單元
  • [ ] Threshold-moving 閾值移動
  • [ ] Time Step 時間步驟
  • [ ] Tokenization 標記化
  • [ ] Training error 訓練誤差
  • [ ] Training instance 訓練示例/訓練例
  • [ ] Transductive learning 直推學習
  • [ ] Transfer learning 遷移學習
  • [ ] Treebank 樹庫
  • [ ] Tria-by-error 試錯法
  • [ ] True negative 真負類
  • [ ] True positive 真正類
  • [ ] True Positive Rate/TPR 真正例率
  • [ ] Turing Machine 圖靈機
  • [ ] Twice-learning 二次學習

  • [ ] Letter U

  • [ ] Underfitting 欠擬合/欠配

  • [ ] Undersampling 欠取樣
  • [ ] Understandability 可理解性
  • [ ] Unequal cost 非均等代價
  • [ ] Unit-step function 單位階躍函式
  • [ ] Univariate decision tree 單變數決策樹
  • [ ] Unsupervised learning 無監督學習/無導師學習
  • [ ] Unsupervised layer-wise training 無監督逐層訓練
  • [ ] Upsampling 上取樣

  • [ ] Letter V

  • [ ] Vanishing Gradient Problem 梯度消失問題

  • [ ] Variational inference 變分推斷
  • [ ] VC Theory VC維理論
  • [ ] Version space 版本空間
  • [ ] Viterbi algorithm 維特比演算法
  • [760 ] Von Neumann architecture 馮 · 諾伊曼架構

  • [ ] Letter W

  • [ ] Wasserstein GAN/WGAN Wasserstein生成對抗網路

  • [ ] Weak learner 弱學習器
  • [ ] Weight 權重
  • [ ] Weight sharing 權共享
  • [ ] Weighted voting 加權投票法
  • [ ] Within-class scatter matrix 類內散度矩陣
  • [ ] Word embedding 詞嵌入
  • [ ] Word sense disambiguation 詞義消歧

  • [ ] Letter Z

  • [ ] Zero-data learning 零資料學習

  • [ ] Zero-shot learning 零次學習

  • [ ] A

  • [ ] approximations近似值

  • [ ] arbitrary隨意的
  • [ ] affine仿射的
  • [ ] arbitrary任意的
  • [ ] amino acid氨基酸
  • [ ] amenable經得起檢驗的
  • [ ] axiom公理,原則
  • [ ] abstract提取
  • [ ] architecture架構,體系結構;建造業
  • [ ] absolute絕對的
  • [ ] arsenal軍火庫
  • [ ] assignment分配
  • [ ] algebra線性代數
  • [ ] asymptotically無症狀的
  • [ ] appropriate恰當的

  • [ ] B

  • [ ] bias偏差

  • [ ] brevity簡短,簡潔;短暫
  • [800 ] broader廣泛
  • [ ] briefly簡短的
  • [ ] batch批量

  • [ ] C

  • [ ] convergence 收斂,集中到一點

  • [ ] convex凸的
  • [ ] contours輪廓
  • [ ] constraint約束
  • [ ] constant常理
  • [ ] commercial商務的
  • [ ] complementarity補充
  • [ ] coordinate ascent同等級上升
  • [ ] clipping剪下物;剪報;修剪
  • [ ] component分量;部件
  • [ ] continuous連續的
  • [ ] covariance協方差
  • [ ] canonical正規的,正則的
  • [ ] concave非凸的
  • [ ] corresponds相符合;相當;通訊
  • [ ] corollary推論
  • [ ] concrete具體的事物,實在的東西
  • [ ] cross validation交叉驗證
  • [ ] correlation相互關係
  • [ ] convention約定
  • [ ] cluster一簇
  • [ ] centroids 質心,形心
  • [ ] converge收斂
  • [ ] computationally計算(機)的
  • [ ] calculus計算

  • [ ] D

  • [ ] derive獲得,取得

  • [ ] dual二元的
  • [ ] duality二元性;二象性;對偶性
  • [ ] derivation求導;得到;起源
  • [ ] denote預示,表示,是…的標誌;意味著,[邏]指稱
  • [ ] divergence 散度;發散性
  • [ ] dimension尺度,規格;維數
  • [ ] dot小圓點
  • [ ] distortion變形
  • [ ] density概率密度函式
  • [ ] discrete離散的
  • [ ] discriminative有識別能力的
  • [ ] diagonal對角
  • [ ] dispersion分散,散開
  • [ ] determinant決定因素
  • [849 ] disjoint不相交的

  • [ ] E

  • [ ] encounter遇到

  • [ ] ellipses橢圓
  • [ ] equality等式
  • [ ] extra額外的
  • [ ] empirical經驗;觀察
  • [ ] ennmerate例舉,計數
  • [ ] exceed超過,越出
  • [ ] expectation期望
  • [ ] efficient生效的
  • [ ] endow賦予
  • [ ] explicitly清楚的
  • [ ] exponential family指數家族
  • [ ] equivalently等價的

  • [ ] F

  • [ ] feasible可行的

  • [ ] forary初次嘗試
  • [ ] finite有限的,限定的
  • [ ] forgo摒棄,放棄
  • [ ] fliter過濾
  • [ ] frequentist最常發生的
  • [ ] forward search前向式搜尋
  • [ ] formalize使定形

  • [ ] G

  • [ ] generalized歸納的

  • [ ] generalization概括,歸納;普遍化;判斷(根據不足)
  • [ ] guarantee保證;抵押品
  • [ ] generate形成,產生
  • [ ] geometric margins幾何邊界
  • [ ] gap裂口
  • [ ] generative生產的;有生產力的

  • [ ] H

  • [ ] heuristic啟發式的;啟發法;啟發程式

  • [ ] hone懷戀;磨
  • [ ] hyperplane超平面

  • [ ] L

  • [ ] initial最初的

  • [ ] implement執行
  • [ ] intuitive憑直覺獲知的
  • [ ] incremental增加的
  • [900 ] intercept截距
  • [ ] intuitious直覺
  • [ ] instantiation例子
  • [ ] indicator指示物,指示器
  • [ ] interative重複的,迭代的
  • [ ] integral積分
  • [ ] identical相等的;完全相同的
  • [ ] indicate表示,指出
  • [ ] invariance不變性,恆定性
  • [ ] impose把…強加於
  • [ ] intermediate中間的
  • [ ] interpretation解釋,翻譯

  • [ ] J

  • [ ] joint distribution聯合概率

  • [ ] L

  • [ ] lieu替代

  • [ ] logarithmic對數的,用對數表示的
  • [ ] latent潛在的
  • [ ] Leave-one-out cross validation留一法交叉驗證

  • [ ] M

  • [ ] magnitude巨大

  • [ ] mapping繪圖,製圖;對映
  • [ ] matrix矩陣
  • [ ] mutual相互的,共同的
  • [ ] monotonically單調的
  • [ ] minor較小的,次要的
  • [ ] multinomial多項的
  • [ ] multi-class classification二分類問題

  • [ ] N

  • [ ] nasty討厭的

  • [ ] notation標誌,註釋
  • [ ] naïve樸素的

  • [ ] O

  • [ ] obtain得到

  • [ ] oscillate擺動
  • [ ] optimization problem最優化問題
  • [ ] objective function目標函式
  • [ ] optimal最理想的
  • [ ] orthogonal(向量,矩陣等)正交的
  • [ ] orientation方向
  • [ ] ordinary普通的
  • [ ] occasionally偶然的

  • [ ] P

  • [ ] partial derivative偏導數

  • [ ] property性質
  • [ ] proportional成比例的
  • [ ] primal原始的,最初的
  • [ ] permit允許
  • [ ] pseudocode虛擬碼
  • [ ] permissible可允許的
  • [ ] polynomial多項式
  • [ ] preliminary預備
  • [ ] precision精度
  • [ ] perturbation 不安,擾亂
  • [ ] poist假定,設想
  • [ ] positive semi-definite半正定的
  • [ ] parentheses圓括號
  • [ ] posterior probability後驗概率
  • [ ] plementarity補充
  • [ ] pictorially影象的
  • [ ] parameterize確定…的引數
  • [ ] poisson distribution柏鬆分佈
  • [ ] pertinent相關的

  • [ ] Q

  • [ ] quadratic二次的

  • [ ] quantity量,數量;分量
  • [ ] query疑問的

  • [ ] R

  • [ ] regularization使系統化;調整

  • [ ] reoptimize重新優化
  • [ ] restrict限制;限定;約束
  • [ ] reminiscent回憶往事的;提醒的;使人聯想…的(of)
  • [ ] remark注意
  • [ ] random variable隨機變數
  • [ ] respect考慮
  • [ ] respectively各自的;分別的
  • [ ] redundant過多的;冗餘的

  • [ ] S

  • [ ] susceptible敏感的

  • [ ] stochastic可能的;隨機的
  • [ ] symmetric對稱的
  • [ ] sophisticated複雜的
  • [ ] spurious假的;偽造的
  • [ ] subtract減去;減法器
  • [ ] simultaneously同時發生地;同步地
  • [ ] suffice滿足
  • [ ] scarce稀有的,難得的
  • [ ] split分解,分離
  • [ ] subset子集
  • [ ] statistic統計量
  • [ ] successive iteratious連續的迭代
  • [ ] scale標度
  • [ ] sort of有幾分的
  • [ ] squares平方

  • [ ] T

  • [ ] trajectory軌跡

  • [ ] temporarily暫時的
  • [ ] terminology專用名詞
  • [ ] tolerance容忍;公差
  • [ ] thumb翻閱
  • [ ] threshold閾,臨界
  • [ ] theorem定理
  • [ ] tangent正弦

  • [ ] U

  • [ ] unit-length vector單位向量

  • [ ] V

  • [ ] valid有效的,正確的

  • [ ] variance方差
  • [ ] variable變數;變元
  • [ ] vocabulary詞彙
  • [ ] valued經估價的;寶貴的

  • [ ] W

  • [1038 ] wrapper包裝

  • [ ]

  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]
  • [ ]