【CF613D】Kingdom and its Cities
阿新 • • 發佈:2019-02-11
stdin || ios 表示 代碼 %d 分類討論 如果 sort
【CF613D】Kingdom and its Cities
題面
洛谷
題解
看到關鍵點當然是建虛樹啦。
設\(f[x]\)表示以\(x\)為根的子樹的答案,\(g[x]\)表示以\(x\)為根的子樹內是否有和\(x\)聯通的點,\(c=\sum_{v\in son_x} g[v]\)。
分類討論一下:
- 如果一個點在原樹下它和它的父親均為關鍵點,那麽顯然不行。
- 這個點是關鍵點,\(f[x]+=c\),\(g[x]=1\)
- 這個點不是關鍵點,若\(c>1\)則斷掉這個點,\(++f[x],g[x]=0\),否則\(g[x]=1\)
這題就做\(v.a.n\)啦。
代碼
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> using namespace std; inline int gi() { register int data = 0, w = 1; register char ch = 0; while (!isdigit(ch) && ch != '-') ch = getchar(); if (ch == '-') w = -1, ch = getchar(); while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); return w * data; } const int MAX_N = 1e5 + 5; struct Graph { int to, next; } e[MAX_N << 1]; int fir1[MAX_N], fir2[MAX_N], e_cnt; void clearGraph() { memset(fir1, -1, sizeof(fir1)); memset(fir2, -1, sizeof(fir2)); } void Add_Edge(int *fir, int u, int v) { e[e_cnt] = (Graph){v, fir[u]}; fir[u] = e_cnt++; } namespace Tree { int fa[MAX_N], dep[MAX_N], size[MAX_N], top[MAX_N], son[MAX_N], dfn[MAX_N], tim; void dfs1(int x) { dfn[x] = ++tim; size[x] = 1, dep[x] = dep[fa[x]] + 1; for (int i = fir1[x]; ~i; i = e[i].next) { int v = e[i].to; if (v == fa[x]) continue; fa[v] = x; dfs1(v); size[x] += size[v]; if (size[v] > size[son[x]]) son[x] = v; } } void dfs2(int x, int tp) { top[x] = tp; if (son[x]) dfs2(son[x], tp); for (int i = fir1[x]; ~i; i = e[i].next) { int v = e[i].to; if (v == fa[x] || v == son[x]) continue; dfs2(v, v); } } int LCA(int x, int y) { while (top[x] != top[y]) { if (dep[top[x]] < dep[top[y]]) swap(x, y); x = fa[top[x]]; } return dep[x] < dep[y] ? x : y; } } using Tree::dfn; using Tree::LCA; int N, M, K, a[MAX_N], f[MAX_N]; bool g[MAX_N], key[MAX_N]; bool cmp(const int &i, const int &j) { return dfn[i] < dfn[j]; } void build() { static int stk[MAX_N], top; e_cnt = 0; top = 0; sort(&a[1], &a[K + 1], cmp); for (int i = 1; i <= K; i++) if (a[i] != a[i - 1]) stk[++top] = a[i]; K = top; for (int i = 1; i <= K; i++) a[i] = stk[i]; stk[top = 1] = 1, fir2[1] = -1; for (int i = 1; i <= K; i++) { if (a[i] == 1) continue; int lca = LCA(a[i], stk[top]); if (lca != stk[top]) { while (dfn[lca] < dfn[stk[top - 1]]) { int u = stk[top], v = stk[top - 1]; Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); --top; } if (dfn[lca] > dfn[stk[top - 1]]) { fir2[lca] = -1; int u = lca, v = stk[top]; Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); stk[top] = lca; } else { int u = lca, v = stk[top--]; Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); } } fir2[a[i]] = -1, stk[++top] = a[i]; } for (int i = 1; i < top; i++) { int u = stk[i], v = stk[i + 1]; Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); } } void Dp(int x, int fa) { f[x] = g[x] = 0; int c = 0; for (int i = fir2[x]; ~i; i = e[i].next) { int v = e[i].to; if (v == fa) continue; Dp(v, x); f[x] += f[v], c += g[v]; } if (key[x]) g[x] = 1, f[x] += c; else if (c > 1) g[x] = 0, ++f[x]; else g[x] = c; } int main () { #ifndef ONLINE_JUDGE freopen("cpp.in", "r", stdin); #endif clearGraph(); N = gi(); for (int i = 1; i < N; i++) { int u = gi(), v = gi(); Add_Edge(fir1, u, v), Add_Edge(fir1, v, u); } Tree::dfs1(1), Tree::dfs2(1, 1); M = gi(); while (M--) { K = gi(); for (int i = 1; i <= K; i++) key[a[i] = gi()] = 1; bool flg = 1; for (int i = 1; i <= K && flg; i++) if (key[Tree::fa[a[i]]]) flg = 0; if (!flg) { puts("-1"); goto NXT; } build(); Dp(1, 0); printf("%d\n", f[1]); NXT : for (int i = 1; i <= K; i++) key[a[i]] = 0; } return 0; }
【CF613D】Kingdom and its Cities