MaskRCNN路標:TensorFlow版本用於摳圖
阿新 • • 發佈:2019-02-14
MaskRCNN用於檢測路標,作為更詳細的目標檢測,用以得到更精準的額路標位置,路標的幾何中心點,用於構建更為精準的拓撲地圖,減少構圖誤差。
摳圖工具已經完成,把框摳出來,用0值表示背景。
python程式碼:
def mainex(): #initDir(); # Root directory of the project ROOT_DIR = os.getcwd() # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Path to trained weights file # Download this file and place in the root of your # project (See README file for details) #COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") COCO_MODEL_PATH= "D:/Works/PyProj/MaskRCNN-tensor/data/model/mask_rcnn_coco.h5"; # Directory of images to run detection on #IMAGE_DIR = os.path.join(ROOT_DIR, "images"); IMAGE_DIR = "data/MedSeaTest/"; config = InferenceConfig() config.display(); # 3. # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Load weights trained on MS-COCO model.load_weights(COCO_MODEL_PATH, by_name=True); # 4 class_names= init_classname(); IMAGE_DIR = "D:/DataSet/PicStyleTest/Medsea3/deskfilter/"; proDir(model, class_names, IMAGE_DIR);
處理目錄:
def proDir( model,class_names,IMAGE_DIR ): # Load a random image from the images folder print(IMAGE_DIR); extention =".jpg"; filelist =traverseFolder( IMAGE_DIR , extention);#traverse( IMAGE_DIR , extention);# for file in filelist: print("Is processing: ");print(file); image = skimage.io.imread( file ); # Run detection results = model.detect([image], verbose=1); # Visualize results #r = results[0]; fileName = file; getAllLabelMask(fileName, image, results[0], class_names)
def getAllLabelMask(fileName,image, maskResult,class_names ): """ boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates. masks: [num_instances, height, width] class_ids: [num_instances] class_names: list of class names of the dataset scores: (optional) confidence scores for each box figsize: (optional) the size of the image. """ boxes = maskResult['rois']; masks = maskResult['masks']; scores = maskResult['scores']; class_ids = maskResult['class_ids']; # Number of instances N = boxes.shape[0]; if not( N<1 or boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]): return row = image.shape[1]; col = image.shape[0]; for i in range(N): # Bounding box if not np.any(boxes[i]): continue; y1, x1, y2, x2 = boxes[i]; # Label class_id = class_ids[i]; score = scores[i] if scores is not None else None label = class_names[class_id]; # Mask mask = masks[:, :, i]; masked_image = np.zeros((col, row, 3), dtype=np.uint8); masked_image = apply_maskX(masked_image, mask); #frontImage = np.zeros( (col, row), dtype=np.uint8 ); frontImage = image.copy(); for m in range(row): for n in range(col): if(masked_image[n, m, 0]<254): #frontImage[n, m] = 255; frontImage[n,m,0] =0; frontImage[n, m, 1] = 0; frontImage[n, m, 2] = 0; #roiMask = masked_image[y1:y2, x1:x2]; roiImg = frontImage[y1:y2, x1:x2]; roiImg = cv2.cvtColor(roiImg, cv2.COLOR_BGR2RGB); fileMask = fileName[0: len(fileName)-4]; fileMask = fileMask +"."+ str(i)+"."+label+"."+"Mask.png"; cv2.imwrite(fileMask, roiImg);
結果: