平衡搜尋樹-AVLTree
阿新 • • 發佈:2019-02-15
AVL樹
又稱為高度平衡的二叉搜尋樹。它能保持二叉樹的高度平衡,儘量降低二叉樹的高度,減少樹的平均搜尋長度。
AVL樹的性質
- 左子樹和右子樹的高度之差的絕對值不超過1
- 樹中的每一個左子樹和右子樹都是AVL樹
- 每個節點都有一個平衡因子,任一節點的平衡因子是-1或0或1.(每個節點的平衡因子等於右子樹的高度減去左子樹的高度,即:bf = rightHeigh - leftHeight)
AVL樹的效率
一顆AVL樹有N個節點,其高度可以保持在log2N(表示log以2為底N的對數),插入/刪除/查詢的時間複雜度也是log2N.
更新平衡因子
- cur在parent左,p bf - -
- cur在parent 右,p bf++
- p == 0;p樹高度不變
- |p| == 1;高度變了,繼續更新
- |p| == 2;不再更新,旋轉平衡起來
插入
- 右單旋轉—— RotateR
- 左單旋轉—— RotateL
- 右左雙旋轉— RotateRL
- 左右雙旋轉— RotateLR
右單旋轉
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if(subLR)
subLR->_parent = parent;
subL->_right = parent;
Node* ppNode = parent->_parent ;
parent->_parent = subL;
if(parent == _root)
{
_root = subL;
_root->_parent = NULL;
}
else
{
if(ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
subL->_parent = ppNode;
}
parent->_bf = subL->_bf = 0;
}
左單旋轉
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if(subRL)
subRL->_parent = parent;
subR->_left = parent;
Node* ppNode = parent->_parent ;
parent->_parent = subR;
if(parent == _root)
{
_root = subR;
_root->_parent = NULL;
}
else
{
if(ppNode->_right == parent)
{
ppNode->_right = subR;
}
else
{
ppNode->_left = subR;
}
subR->_parent = ppNode;
}
parent->_bf = subR->_bf = 0;
}
右左雙旋轉
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
if(bf == 0)
{
subR->_bf = parent->_bf = subRL->_bf = 0;
}
else if(bf == 1)
{
parent->_bf = -1;
subR->_bf = 0;
subRL->_bf = 0;
}
else
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
}
左右雙旋轉
左右的圖和右左圖類似
void RotateLR(Node* parent) //左右雙旋
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(subL);
RotateR(parent);
if (bf == 0)
parent->_bf =subLR->_bf= subL->_bf = 0;
else if (bf == 1)
{
parent->_bf = subLR->_bf = 0;
subL->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = subLR->_bf = 0;
}
}
判斷是不是平衡二叉樹:
程式碼實現:
- AVLTree.h
- test.cpp
AVLTree.h
//#pragma once
#include <iostream>
using namespace std;
template<class K,class V>
struct AVLTreeNode
{
K _key;
V _value;
int _bf;
AVLTreeNode<K,V>* _left;
AVLTreeNode<K,V>* _right;
AVLTreeNode<K,V>* _parent;
AVLTreeNode(const K& key,const V& value)
:_key(key)
,_value(value)
,_bf(0)
,_left(NULL)
,_right(NULL)
,_parent(NULL)
{}
};
template<class K,class V>
class AVLTree
{
typedef AVLTreeNode<K,V> Node;
public:
AVLTree()
:_root(NULL)
{}
//插入
bool Insert(const K& key,const V& value)
{
if(_root == NULL)
{
_root = new Node(key,value);
return true;
}
Node* cur = _root;
Node* parent = NULL;
while(cur)
{
if( cur->_key < key)//根 < 插入的節點
{
parent = cur;
cur = cur->_right;
}
else if( cur->_key > key)
{
parent = cur;
cur = cur->_left ;
}
else
{
return false;
}
}
cur = new Node(key,value);
if(parent->_key < key)
{
parent->_right = cur;
cur->_parent = parent;
}
else if(parent->_key > key)
{
parent->_left = cur;
cur->_parent = parent;
}
//更新平衡因子
//1.cur在parent左,p bf--
//2.cur在parent 右,p bf++
//p == 0;p樹高度不變
//|p| == 1;高度變了,繼續更新
//|p| == 2;不再更新,旋轉平衡起來
while(parent)
{
if(cur == parent->_left)
{
parent->_bf--;
}
else
{
parent->_bf++;
}
if(parent->_bf == 0)
{
break;
}
else if(parent->_bf == 1 || parent->_bf == -1)
{
//從樹下往上更新
cur = parent;
parent = cur->_parent;
}
else if(parent->_bf == -2 || parent->_bf == 2)
{
if(parent->_bf == 2)
{
if(cur->_bf == 1)
{
RotateL(parent);
}
else //-1
{
RotateRL(parent);
}
}
else // -2
{
if(cur->_bf == -1)
{
RotateR(parent);
}
else // 1
{
RotateLR(parent);
}
}
}
break;
}
}
void InOrder()
{
_InOrder(_root);
cout<<endl;
}
void _InOrder(Node* root)//中序遍歷 左中右
{
if(root == NULL)
return;
_InOrder(root->_left);
cout<<root->_key<<" ";
_InOrder(root->_right);
}
//右單旋轉
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if(subLR)
subLR->_parent = parent;
subL->_right = parent;
Node* ppNode = parent->_parent ;
parent->_parent = subL;
if(parent == _root)
{
_root = subL;
_root->_parent = NULL;
}
else
{
if(ppNode->_left == parent)
{
ppNode->_left = subL;
}
else
{
ppNode->_right = subL;
}
subL->_parent = ppNode;
}
parent->_bf = subL->_bf = 0;
}
//左單旋轉
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if(subRL)
subRL->_parent = parent;
subR->_left = parent;
Node* ppNode = parent->_parent ;
parent->_parent = subR;
if(parent == _root)
{
_root = subR;
_root->_parent = NULL;
}
else
{
if(ppNode->_right == parent)
{
ppNode->_right = subR;
}
else
{
ppNode->_left = subR;
}
subR->_parent = ppNode;
}
parent->_bf = subR->_bf = 0;
}
//右左雙旋轉
void RotateRL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
int bf = subRL->_bf;
RotateR(parent->_right);
RotateL(parent);
if(bf == 0)
{
subR->_bf = parent->_bf = subRL->_bf = 0;
}
else if(bf == 1)
{
parent->_bf = -1;
subR->_bf = 0;
subRL->_bf = 0;
}
else
{
parent->_bf = 0;
subR->_bf = 1;
subRL->_bf = 0;
}
}
//左右雙旋轉
void RotateLR(Node* parent) //左右雙旋
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
int bf = subLR->_bf;
RotateL(subL);
RotateR(parent);
if (bf == 0)
parent->_bf =subLR->_bf= subL->_bf = 0;
else if (bf == 1)
{
parent->_bf = subLR->_bf = 0;
subL->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 1;
subL->_bf = subLR->_bf = 0;
}
}
//判斷是不是平衡搜尋樹
//1. 遞迴——時間複雜度n^2
// (遞迴的次數*每次遞迴的次數)
// 每個節點的遍歷*高度(也是遍歷整個樹)
//bool IsBalance()
//{
// int depth = 0;
// return _IsBalance(_root);
//}
//int MaxDepth(Node* root)
//{
//if (NULL == root)
// return 0;
//int left = MaxDepth(root->_left)+1;
//int right = MaxDepth(root->_right) + 1;
//return left > right ? left : right;
//}
//bool _IsBalance(Node* root)
//{
// //遞迴的終止條件
// if(root == NULL)
// {
// return true;
// }
// int leftHeight = MaxDepth(root->_left);
// int rightHeight = MaxDepth(root->_right);
// return abs(rightHeight-leftHeight) < 2
// && _IsBalance(root->_left)
// && _IsBalance(root->_right);
//}
//2. 優化——時間複雜度O(n)——高度只遍歷一次
bool IsBalance()
{
int depth = 0;
return _IsBalance(_root,depth);
}
bool _IsBalance(Node* root,int& depth)
{
if(root == NULL)
{
return true;
}
int left = 0;
int right = 0;
if(_IsBalance(root->_left,left)&&_IsBalance(root->_right,right))
{
if( abs(left-right) > 1 )
return false;
depth = (left > right ? left : right)+1;
return true;
}
return false;
}
/* bool _IsBalance(Node* root,int& depth)
{
if(root == NULL)
{
depth = 0;
return true;
}
int leftdepth = 0;
int rightdepth = 0;
if(_IsBalance(root->_left,leftdepth) == false)
return false;
if(_IsBalance(root->_right,rightdepth) == false)
return false;
if(rightdepth - leftdepth != root->_bf)
{
cout << root->_key << "平衡因子異常" << endl;
return false;
}
depth = leftdepth > rightdepth ? leftdepth+1 : rightdepth+1;
} */
private:
Node* _root;
};
test.cpp
#include "AVLTree.h"
void testAVLTree()
{
AVLTree<int, int> t;
int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
int depth = 0;
for (size_t i = 0; i < sizeof(a) / sizeof(a[0]); i++)
{
t.Insert(a[i], i);
cout << "isbalance?"<<t.IsBalance() <<"插入"<< a[i] << endl;
}
t.InOrder();
t.IsBalance();
AVLTree<int, int> t1;
int a1[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
for (size_t i = 0; i < sizeof(a1) / sizeof(a1[0]); i++)
{
t1.Insert(a1[i], i);
cout << "isbalance?" << t1.IsBalance() << "插入" << a1[i] << endl;
}
t1.InOrder();
}
int main()
{
testAVLTree();
return 0;
}