Hadoop2.0 Mapreduce例項WordCount體驗
阿新 • • 發佈:2019-02-15
在Hadoop2.0中MapReduce程式的都需要繼承org.apache.hadoop.mapreduce.Mapper 和 org.apache.hadoop.mapreduce.Reducer這兩個基礎類,來定製自己的mapreduce功能,原始碼中主要的函式如下
Mapper.java
Reducer.javapublic void run(Context context) throws IOException, InterruptedException { setup(context); // Called once at the beginning of the task. while (context.nextKeyValue()) { map(context.getCurrentKey(), context.getCurrentValue(), context); } cleanup(context); // Called once at the end of the task. } } /** * Called once for each key/value pair in the input split. Most applications * should override this, but the default is the identity function. */ protected void map(KEYIN key, VALUEIN value, Context context) throws IOException, InterruptedException { context.write((KEYOUT) key, (VALUEOUT) value); }
public void run(Context context) throws IOException, InterruptedException { setup(context); // Called once at the beginning of the task. while (context.nextKey()) { reduce(context.getCurrentKey(), context.getValues(), context); } cleanup(context); // Called once at the end of the task. } /** * This method is called once for each key. Most applications will define * their reduce class by overriding this method. The default implementation * is an identity function. */ protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context ) throws IOException, InterruptedException { for(VALUEIN value: values) { context.write((KEYOUT) key, (VALUEOUT) value); } }
在Mapper和Reducer類中,都有一個run()方法不斷提供(key,value)來呼叫map()和reduce()函式來處理,我們一般只需重寫其中的map和reduce方法。在mapreduce中只有支援序列化的類才能作為鍵值,其中的key還必須要是可比較的,故 key要實現WritableComparable介面,value只需要實現Writable介面。
如下給出自己參照原始碼寫的MyWordCount.java
import java.io.IOException; import java.util.Iterator; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class MyWordCount { public static class WordCountMapper extends Mapper<Object,Text,Text,IntWritable> { private static final IntWritable one = new IntWritable(1); private Text word = new Text(); protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer words = new StringTokenizer(line); while(words.hasMoreTokens()) { word.set(words.nextToken()); context.write(word, one); } } } public static class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable totalNum = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException { int sum = 0; Iterator<IntWritable> it = values.iterator(); while(it.hasNext()) { sum += it.next().get(); } totalNum.set(sum); context.write(key,totalNum); } } public static void main(String[] args) throws Exception{ Configuration conf = new Configuration(); Job job = new Job(conf,"MyWordCount"); job.setJarByClass(MyWordCount.class); //設定執行jar中的class名稱 job.setMapperClass(WordCountMapper.class);//設定mapreduce中的mapper reducer combiner類 job.setReducerClass(WordCountReducer.class); job.setCombinerClass(WordCountReducer.class); job.setOutputKeyClass(Text.class); //設定輸出結果鍵值對型別 job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job,new Path(args[0]));//設定mapreduce輸入輸出檔案路徑 FileOutputFormat.setOutputPath(job,new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0:1); } }