《python+opencv實踐》一、基於顏色的物體追蹤(下)
阿新 • • 發佈:2019-02-16
做了功能上的強化,強化如下:
(1)加了pts清空,即當沒有檢測到目標時,清空pts,顯示的影象上不再有軌跡;
(2)加了運動方向判別,能夠判別目標的運動方向及當前座標。
from collections import deque import numpy as np import time #import imutils import cv2 #設定紅色閾值,HSV空間 redLower = np.array([170, 100, 100]) redUpper = np.array([179, 255, 255]) #初始化追蹤點的列表 mybuffer = 16 pts = deque(maxlen=mybuffer) counter = 0 #開啟攝像頭 camera = cv2.VideoCapture(0) #等待兩秒 time.sleep(3) #遍歷每一幀,檢測紅色瓶蓋 while True: #讀取幀 (ret, frame) = camera.read() #判斷是否成功開啟攝像頭 if not ret: print 'No Camera' break #frame = imutils.resize(frame, width=600) #轉到HSV空間 hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) #根據閾值構建掩膜 mask = cv2.inRange(hsv, redLower, redUpper) #腐蝕操作 mask = cv2.erode(mask, None, iterations=2) #膨脹操作,其實先腐蝕再膨脹的效果是開運算,去除噪點 mask = cv2.dilate(mask, None, iterations=2) cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] #初始化瓶蓋圓形輪廓質心 center = None #如果存在輪廓 if len(cnts) > 0: #找到面積最大的輪廓 c = max(cnts, key = cv2.contourArea) #確定面積最大的輪廓的外接圓 ((x, y), radius) = cv2.minEnclosingCircle(c) #計算輪廓的矩 M = cv2.moments(c) #計算質心 center = (int(M["m10"]/M["m00"]), int(M["m01"]/M["m00"])) #只有當半徑大於10時,才執行畫圖 if radius > 10: cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2) cv2.circle(frame, center, 5, (0, 0, 255), -1) #把質心新增到pts中,並且是新增到列表左側 pts.appendleft(center) else:#如果影象中沒有檢測到瓶蓋,則清空pts,影象上不顯示軌跡。 pts.clear() for i in xrange(1, len(pts)): if pts[i - 1] is None or pts[i] is None: continue #計算所畫小線段的粗細 thickness = int(np.sqrt(mybuffer / float(i + 1)) * 2.5) #畫出小線段 cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness) #判斷移動方向 if counter >= 10 and i == 1 and len(pts) >= 10: dX = pts[-10][0] - pts[i][0] dY = pts[-10][1] - pts[i][1] (dirX, dirY) = ("", "") if np.abs(dX) > 20: dirX = "East" if np.sign(dX) == 1 else "West" if np.abs(dY) > 20: dirY = "North" if np.sign(dY) == 1 else "South" if dirX != "" and dirY != "": direction = "{}-{}".format(dirY, dirX) else: direction = dirX if dirX != "" else dirY cv2.putText(frame, direction, (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 3) cv2.putText(frame, "dx: {}, dy: {}".format(dX, dY), (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1) cv2.imshow('Frame', frame) #鍵盤檢測,檢測到esc鍵退出 k = cv2.waitKey(1)&0xFF counter += 1 if k == 27: break #攝像頭釋放 camera.release() #銷燬所有視窗 cv2.destroyAllWindows()
由於視訊是映象的,所以圖片上的South-East結果是正確的!