hdu 1098 Ignatius's puzzle
阿新 • • 發佈:2019-02-17
題目地址:
題目描述:
Ignatius's puzzle
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 5645 Accepted Submission(s): 3871
Problem Description Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".
Input The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
Output The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
Sample Input 11 100 9999
Sample Output 22 no 43
題意:
給定f(x)=5*x^13+13*x^5+k*a*x,現給出k值 ,求能使x取任意值都能使f(x)%65==0的最小a值。
題解:
數論,數學歸納法,使f(0)能整除65 然後 假設 f(x)能整除65 證明f(x+1)也能整除65,這樣就能滿足題意任意x的條件了。
f(0)=0 能整除65, f(1)=18+ka 能整除65(假設的),假設f(x)能整除65,那麼f(x+1)=f(x)+5*[C(13,1)x^12+……+C(13,13)x^0]+13*[C(5,1)x^4……+C(5,5)x^0]+ka=f(x)+5*[C(13,1)x^12+……+C(13,12)x^1]+13*[C(5,1)x^4……+C(5,4)x^1]+18+ka。(二項式展開,泰勒展開)
可以發現除了18+ka外 其他都能整除65;所以要使f(x+1)要能整除65,那麼需要18+ka要能整除65(注意:這不是個充要條件 ,而是一個必要不充分條件)
現在整個問題轉換為 使 18+ka 能整除65的最小 a值;假設k=1,而要使a值最小 那麼a最大能取到65
所以直接列舉每個樣例a到65即可。
程式碼:
#include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<iostream> #include<algorithm> using namespace std; int k=0,a=0; /*for test*/ int test() { return(0); } /*main process*/ int MainProc() { while(scanf("%d",&k)!=EOF) { for(a=0;a<=65;a++) { if((18+k*a)%65==0) { printf("%d\n",a); break; } } if(a>65) { printf("no\n"); } } return(0); } int main() { MainProc(); return(0); }