1. 程式人生 > >BZOJ4154:[IPSC2015]Generating Synergy

BZOJ4154:[IPSC2015]Generating Synergy

include string con mem html space main int names

淺談\(K-D\) \(Tree\):https://www.cnblogs.com/AKMer/p/10387266.html

題目傳送門:https://lydsy.com/JudgeOnline/problem.php?id=4154

每個節點看做是點\((dfn_i,dep_i)\),然後對於距離\(a\)的不超過\(l\)的在\(a\)子樹中的點就是正方形\([dfn_a,dfn_a+siz_a-1][dep_a,dep_a+l]\),直接範圍\(cover\)和單點查詢即可。

時間復雜度:\(O(n\sqrt{n})\)

空間復雜度:\(O(n)\)

代碼如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn=1e5+5,inf=2e9,mo=1e9+7;

int n,m,c,tot,cnt,pps,ans,Case;
int now[maxn],pre[maxn<<1],son[maxn<<1];
int dfn[maxn],node[maxn],siz[maxn],dep[maxn];

int read() {
    int x=0,f=1;char ch=getchar();
    for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
    for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
    return x*f;
}

void add(int a,int b) {
    pre[++tot]=now[a];
    now[a]=tot,son[tot]=b;
}

void dfs(int u,int D) {
    dfn[u]=++cnt,dep[u]=D,siz[u]=1;
    for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
        dfs(v,D+1),siz[u]+=siz[v];
}

struct kd_tree {
    int root,top;
    int stk[maxn],fa[maxn];

    struct point {
        int cov,col,ls,rs;
        int c[2],mn[2],mx[2];

        point() {}

        point(int _x,int _y) {
            mn[0]=mx[0]=c[0]=_x;
            mn[1]=mx[1]=c[1]=_y;
            col=1,cov=-1,ls=rs=0;
        }

        bool operator<(const point &a)const {
            return c[pps]<a.c[pps];
        }
    }p[maxn];

    int build(int l,int r,int d) {
        int mid=(l+r)>>1,u=mid;pps=d;
        nth_element(p+l,p+mid,p+r+1);
        node[p[u].c[0]]=u;
        if(l<mid)p[u].ls=build(l,mid-1,d^1);
        if(r>mid)p[u].rs=build(mid+1,r,d^1);
        int ls=p[u].ls,rs=p[u].rs;fa[ls]=fa[rs]=u;
        for(int i=0;i<2;i++) {
            int mn=min(p[ls].mn[i],p[rs].mn[i]);
            p[u].mn[i]=min(p[u].mn[i],mn);
            int mx=max(p[ls].mx[i],p[rs].mx[i]);
            p[u].mx[i]=max(p[u].mx[i],mx);
        }
        return u;
    }

    void prepare() {
        p[0].mn[0]=p[0].mn[1]=inf;
        p[0].mx[0]=p[0].mx[1]=-inf;
        for(int i=1;i<=n;i++)
            p[i]=point(dfn[i],dep[i]);
        root=build(1,n,0);
    }

    void make_tag(int u,int c) {
        p[u].col=p[u].cov=c;
    }

    void push_down(int u) {
        if(p[u].cov==-1)return;
        if(p[u].ls)make_tag(p[u].ls,p[u].cov);
        if(p[u].rs)make_tag(p[u].rs,p[u].cov);
        p[u].cov=-1;
    }

    void query(int u,int id) {
        int tmp=u;
        while(fa[u])stk[++top]=fa[u],u=fa[u];
        while(top)push_down(stk[top--]);
        ans=(ans+1ll*id*p[tmp].col%mo)%mo;
    }

    void change(int u,int x1,int x2,int y1,int y2,int color) {
        if(x2<p[u].mn[0]||x1>p[u].mx[0])return;
        if(y2<p[u].mn[1]||y1>p[u].mx[1])return;
        bool bo1=(x1<=p[u].mn[0]&&p[u].mx[0]<=x2);
        bool bo2=(y1<=p[u].mn[1]&&p[u].mx[1]<=y2);
        if(bo1&&bo2) {make_tag(u,color);return;}
        push_down(u);
        bo1=(x1<=p[u].c[0]&&p[u].c[0]<=x2);
        bo2=(y1<=p[u].c[1]&&p[u].c[1]<=y2);
        if(bo1&&bo2)p[u].col=color;
        if(p[u].ls)change(p[u].ls,x1,x2,y1,y2,color);
        if(p[u].rs)change(p[u].rs,x1,x2,y1,y2,color);
    }
}T;

void clear() {
    ans=tot=cnt=pps=0;
    memset(now,0,sizeof(now));
    memset(T.fa,0,sizeof(T.fa));
}

int main() {
    Case=read();
    while(Case--) {
        n=read(),c=read(),m=read(),clear();
        for(int i=2,x;i<=n;i++)
            x=read(),add(x,i);
        dfs(1,1);T.prepare();
        for(int i=1;i<=m;i++) {
            int a=read(),l=read(),opt=read();
            if(!opt)T.query(node[dfn[a]],i);
            else T.change(T.root,dfn[a],dfn[a]+siz[a]-1,dep[a],dep[a]+l,opt);
        }
        printf("%d\n",ans);
    }
    return 0;
}

BZOJ4154:[IPSC2015]Generating Synergy