1. 程式人生 > >[bzoj4154] [Ipsc2015]Generating Synergy

[bzoj4154] [Ipsc2015]Generating Synergy

Description

給定一棵以1為根的有根樹,初始所有節點顏色為1,每次將距離節點a不超過l的a的子節點染成c,或詢問點a的顏色

Input

第一行一個數T,表示資料組數

接下來每組資料的第一行三個數n,c,q表示結點個數,顏色數和運算元

接下來一行n-1個數描述2..n的父節點

接下來q行每行三個數a,l,c

若c為0,表示詢問a的顏色

否則將距離a不超過l的a的子節點染成c

Output

設當前是第i個操作,y_i為本次詢問的答案(若本次操作是一個修改則y_i為0),令z_i=i*y_i,請輸出z_1+z_2+...+z_q模10^9+7

Sample Input

1
4 3 7
1 2 2
3 0 0
2 1 3
3 0 0
1 0 2
2 0 0
4 1 1
4 0 0

Sample Output

32

Solution

\(kd\_tree\)

每個點看做二維平面上的\((dfn[x],dep[x])\),然後用支援區間修改的\(kd\_tree\)就行了。

#include<bits/stdc++.h>
using namespace std;
 
void read(int &x) {
    x=0;int f=1;char ch=getchar();
    for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
    for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
 
void print(int x) {
    if(x<0) putchar('-'),x=-x;
    if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}

const int maxn = 2e5+10;

int dfn[maxn],dep[maxn],n,c,q,sz[maxn],id[maxn];

struct Input_Tree {
    int head[maxn],tot,dfn_cnt;
    struct edge{int to,nxt;}e[maxn<<1];

    void add(int u,int v) {e[++tot]=(edge){v,head[u]},head[u]=tot;}
    void ins(int u,int v) {add(u,v),add(v,u);}

    void dfs(int x,int fa) {
        dep[x]=dep[fa]+1,dfn[x]=++dfn_cnt,sz[x]=1;
        for(int i=head[x];i;i=e[i].nxt)
            if(e[i].to!=fa) dfs(e[i].to,x),sz[x]+=sz[e[i].to];
    }
}T;

struct data {
    int l,r,d[2],mx[2],mn[2],col,tag,f;
    void clear() {l=r=d[0]=d[1]=0,mn[0]=mn[1]=mx[0]=mx[1]=0,col=tag=0;}
}t[maxn];

int Dem,u,d,L,R,cst;

int cmp(data a,data b) {return a.d[Dem]<b.d[Dem];}

inline void chmin(int &x,int y) {if(y<x) x=y;}
inline void chmax(int &x,int y) {if(y>x) x=y;}

struct kd_tree {
    int rt;
    void up(int x) {
        int l=t[x].l,r=t[x].r;
        if(l) {
            chmin(t[x].mn[0],t[l].mn[0]);
            chmin(t[x].mn[1],t[l].mn[1]);
            chmax(t[x].mx[0],t[l].mx[0]);
            chmax(t[x].mx[1],t[l].mx[1]);
        }
        if(r) {
            chmin(t[x].mn[0],t[r].mn[0]);
            chmin(t[x].mn[1],t[r].mn[1]);
            chmax(t[x].mx[0],t[r].mx[0]);
            chmax(t[x].mx[1],t[r].mx[1]);
        }
    }
    int build(int l,int r,int D,int fa) {
        int mid=(l+r)>>1;
        Dem=D;nth_element(t+l+1,t+mid+1,t+r+1,cmp);
        t[mid].mx[0]=t[mid].mn[0]=t[mid].d[0];t[mid].f=fa;
        t[mid].mx[1]=t[mid].mn[1]=t[mid].d[1];
        if(l!=mid) t[mid].l=build(l,mid-1,D^1,mid);
        if(r!=mid) t[mid].r=build(mid+1,r,D^1,mid);
        t[mid].col=1;id[t[mid].tag]=mid;t[mid].tag=0;
        up(mid);
        return mid;
    }
    void push_tag(int p,int r) {t[p].col=t[p].tag=r;}
    void pushdown(int p) {
        if(!t[p].tag) return ;
        if(t[p].l) push_tag(t[p].l,t[p].tag);
        if(t[p].r) push_tag(t[p].r,t[p].tag);
        t[p].tag=0;
    }
    void modify(int p) {
        if(t[p].mn[0]>R||t[p].mx[0]<L||t[p].mn[1]>u||t[p].mx[1]<d) return ;
        if(t[p].mn[0]>=L&&t[p].mx[0]<=R&&t[p].mn[1]>=d&&t[p].mx[1]<=u) return push_tag(p,cst),void();
        pushdown(p);
        if(L<=t[p].d[0]&&t[p].d[0]<=R&&d<=t[p].d[1]&&t[p].d[1]<=u) t[p].col=cst;
        if(t[p].l) modify(t[p].l);
        if(t[p].r) modify(t[p].r);
    }
    int sta[maxn],top;
    int query(int x) {
        int a=x;
        while(t[x].f) sta[++top]=t[x].f,x=t[x].f;
        while(top) pushdown(sta[top--]);
        return t[a].col;
    }
}kdt;

const int mod = 1e9+7;

void clear() {
    for(int i=1;i<=n;i++) t[i].clear(),T.head[i]=dep[i]=dfn[i]=sz[i]=0;
    T.tot=T.dfn_cnt=0;
}

void solve() {
    read(n),read(c),read(q);
    for(int i=2,x;i<=n;i++) read(x),T.ins(i,x);
    T.dfs(1,0);
    for(int i=1;i<=n;i++) t[i].d[0]=dfn[i],t[i].d[1]=dep[i],t[i].tag=i;
    kdt.rt=kdt.build(1,n,0,0);int ans=0;
    for(int i=1;i<=q;i++) {
        int a,l,cc;read(a),read(l),read(cc);
        if(!cc) ans=(0ll+ans+1ll*i*kdt.query(id[a]))%mod;
        else L=dfn[a],R=dfn[a]+sz[a]-1,u=dep[a]+l,d=dep[a],cst=cc,kdt.modify(kdt.rt);
    }
    write(ans);
}

int main() {
    int ttt;read(ttt);while(ttt--) clear(),solve();
    return 0;
}