Codeforces Educational Codeforces Round 57 題解
阿新 • • 發佈:2019-02-20
sco 方程 -m 為什麽 break cat b- expec d+
傳送門
Div 2的比賽,前四題還有那麽多人過,應該是SB題,就不講了。
這場比賽一堆計數題,很舒服。(雖然我沒打)
E. The Top Scorer
其實這題也不難,不知道為什麽這麽少人過。
考慮枚舉那人的分數和有多少人和他同分,推一下就會發現我們只需要知道\(calc(sum,n,top)\)表示\(sum\)分,分給\(n\)個人,分數小於\(top\),的方案數。
好像不是很好直接搞,考慮容斥,枚舉一下至少有幾個人不滿足條件即可。
#include<bits/stdc++.h> namespace my_std{ using namespace std; #define pii pair<int,int> #define fir first #define sec second #define MP make_pair #define rep(i,x,y) for (int i=(x);i<=(y);i++) #define drep(i,x,y) for (int i=(x);i>=(y);i--) #define go(x) for (int i=head[x];i;i=edge[i].nxt) #define mod (ll(998244353)) #define sz 10101 typedef long long ll; typedef double db; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); template<typename T>inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);} template<typename T>inline void read(T& t) { t=0;char f=0,ch=getchar();double d=0.1; while(ch>‘9‘||ch<‘0‘) f|=(ch==‘-‘),ch=getchar(); while(ch<=‘9‘&&ch>=‘0‘) t=t*10+ch-48,ch=getchar(); if(ch==‘.‘){ch=getchar();while(ch<=‘9‘&&ch>=‘0‘) t+=d*(ch^48),d*=0.1,ch=getchar();} t=(f?-t:t); } template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);} void file() { #ifndef ONLINE_JUDGE freopen("a.txt","r",stdin); #endif } #ifdef mod ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;} ll inv(ll x){return ksm(x,mod-2);} #else ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;} #endif // inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;} } using namespace my_std; ll fac[sz],_fac[sz]; void init(){fac[0]=_fac[0]=1;rep(i,1,sz-1) _fac[i]=inv(fac[i]=fac[i-1]*i%mod);} ll C(int n,int m){return n>=m&&m>=0?fac[n]*_fac[m]%mod*_fac[n-m]%mod:0;} int n,r,s; ll calc(int sum,int n,int top) // sum points for n people , < top { if (!n) return sum==0; ll ret=0; rep(i,0,n) { if (i*top>sum) return ret; int cur=sum-i*top; ret=(ret+1ll*((i&1)?-1:1)*C(cur+n-1,n-1)*C(n,i)%mod+mod)%mod; } return ret; } int main() { file(); init(); read(n,s,r); ll tot=C(s-r+n-1,n-1); ll ans=0; rep(i,r,s) { rep(j,0,n-1) { int rest=s-i-i*j;if (rest<0) break; ans=(ans+calc(rest,n-j-1,i)*C(n-1,j)%mod*inv(j+1)%mod)%mod; } } cout<<ans*inv(tot)%mod; return 0; }
F. Inversion Expectation
很容易想到把各個部分的貢獻拆開來算。
分成三個部分:已知對已知、未知對未知、未知對已知。
前兩個都很好搞,第三個考慮期望的線性性(雖然我不知道那是啥),隨便搞搞就好了。
#include<bits/stdc++.h> clock_t t=clock(); namespace my_std{ using namespace std; #define pii pair<int,int> #define fir first #define sec second #define MP make_pair #define rep(i,x,y) for (int i=(x);i<=(y);i++) #define drep(i,x,y) for (int i=(x);i>=(y);i--) #define go(x) for (int i=head[x];i;i=edge[i].nxt) #define templ template<typename T> #define mod 998244353ll #define sz 200220 typedef long long ll; typedef double db; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);} templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;} templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;} templ inline void read(T& t) { t=0;char f=0,ch=getchar();double d=0.1; while(ch>‘9‘||ch<‘0‘) f|=(ch==‘-‘),ch=getchar(); while(ch<=‘9‘&&ch>=‘0‘) t=t*10+ch-48,ch=getchar(); if(ch==‘.‘){ch=getchar();while(ch<=‘9‘&&ch>=‘0‘) t+=d*(ch^48),d*=0.1,ch=getchar();} t=(f?-t:t); } template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);} void file() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); #endif } inline void chktime() { #ifndef ONLINE_JUDGE cout<<(clock()-t)/1000.0<<‘\n‘; #endif } #ifdef mod ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;} ll inv(ll x){return ksm(x,mod-2);} #else ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;} #endif // inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;} } using namespace my_std; int n,m; int a[sz]; bool vis[sz]; ll tr[sz]; void add(int x,int y){while (x<=n) (tr[x]+=y)%=mod,x+=(x&(-x));} int query(int x){ll ret=0;while (x) (ret+=tr[x])%=mod,x-=(x&(-x));return ret;} ll fac[sz]; int main() { file(); cin>>n; rep(i,1,n) { cin>>a[i]; if (a[i]==-1) ++m; } ll ans=0; rep(i,1,n) if (a[i]!=-1) (ans+=query(n)-query(a[i]))%=mod,add(a[i],1); fac[0]=1;rep(i,1,n) fac[i]=fac[i-1]*i%mod; (ans*=fac[m])%=mod; (ans+=fac[m]*inv(4)%mod*(1ll*m*(m-1)%mod)%mod)%=mod; int cnt=0; rep(i,1,n) if (a[i]!=-1) (ans+=fac[m-1]*(1ll*cnt*(m+query(a[i])-a[i])%mod+1ll*(m-cnt)*(a[i]-query(a[i]))%mod)%mod)%=mod; else ++cnt; cout<<ans*inv(fac[cnt])%mod; return 0; }
G. Lucky Tickets
很容易想到枚舉兩邊有多少分。
考慮一個DP:\(dp_{i,j}\)表示前\(i\)位的和為\(j\)的方案數,轉移方程顯然。
感受一下,這東西就是一個多項式快速冪,就做完了。
#include<bits/stdc++.h> clock_t t=clock(); namespace my_std{ using namespace std; #define pii pair<int,int> #define fir first #define sec second #define MP make_pair #define rep(i,x,y) for (int i=(x);i<=(y);i++) #define drep(i,x,y) for (int i=(x);i>=(y);i--) #define go(x) for (int i=head[x];i;i=edge[i].nxt) #define templ template<typename T> #define sz 8010100 #define mod 998244353ll typedef long long ll; typedef double db; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);} templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;} templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;} templ inline void read(T& t) { t=0;char f=0,ch=getchar();double d=0.1; while(ch>‘9‘||ch<‘0‘) f|=(ch==‘-‘),ch=getchar(); while(ch<=‘9‘&&ch>=‘0‘) t=t*10+ch-48,ch=getchar(); if(ch==‘.‘){ch=getchar();while(ch<=‘9‘&&ch>=‘0‘) t+=d*(ch^48),d*=0.1,ch=getchar();} t=(f?-t:t); } template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);} void file() { #ifndef ONLINE_JUDGE freopen("a.in","r",stdin); #endif } inline void chktime() { #ifndef ONLINE_JUDGE cout<<(clock()-t)/1000.0<<‘\n‘; #endif } #ifdef mod ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;} ll inv(ll x){return ksm(x,mod-2);} #else ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;} #endif // inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;} } using namespace my_std; int limit,r[sz]; void NTT_init(int n) { limit=1;int l=-1; while (limit<=n+n) limit<<=1,++l; rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l); } void NTT(ll *a,int type) { rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]); rep(i,0,limit-1) a[i]%=mod; for (int mid=1;mid<limit;mid<<=1) { ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn); for (int j=0,len=mid<<1;j<limit;j+=len) { ll w=1; for (int k=0;k<mid;k++,w=w*Wn%mod) { ll x=a[j+k],y=a[j+k+mid]*w; a[j+k]=(x+y)%mod;a[j+k+mid]=(1ll*mod*mod-y+x)%mod; } } } if (type==1) return; ll I=inv(limit); rep(i,0,limit-1) a[i]=a[i]*I%mod; } int n,K; ll a[sz]; int main() { file(); read(n,K); int x; rep(i,1,K) read(x),a[x]=1; NTT_init(n*10); NTT(a,1); rep(i,0,limit) a[i]=ksm(a[i],n/2); NTT(a,-1); ll ans=0; rep(i,0,n*10) (ans+=a[i]*a[i]%mod)%=mod; cout<<ans; return 0; }
Codeforces Educational Codeforces Round 57 題解