1. 程式人生 > >Ayoub and Lost Array

Ayoub and Lost Array

byte tchar tis sum min dash r+ false frame

C. Ayoub and Lost Array time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output

Ayoub had an array aa of integers of size nn and this array had two interesting properties:

  • All the integers in the array were between
    ll and rr (inclusive).
  • The sum of all the elements was divisible by 33.

Unfortunately, Ayoub has lost his array, but he remembers the size of the array nn and the numbers ll and rr, so he asked you to find the number of ways to restore the array.

Since the answer could be very large, print it modulo

109+7109+7 (i.e. the remainder when dividing by 109+7109+7). In case there are no satisfying arrays (Ayoub has a wrong memory), print 00.

Input

The first and only line contains three integers nn, ll and rr (1n2105,1lr1091≤n≤2⋅105,1≤l≤r≤109) — the size of the lost array and the range of numbers in the array.

Output

Print the remainder when dividing by 109+7109+7 the number of ways to restore the array.

Examples input Copy
2 1 3
output Copy
3
input Copy
3 2 2
output Copy
1
input Copy
9 9 99
output Copy
711426616
Note

In the first example, the possible arrays are : [1,2],[2,1],[3,3][1,2],[2,1],[3,3].

In the second example, the only possible array is [2,2,2][2,2,2].

#include<bits/stdc++.h>
#define REP(i, a, b) for(int i = (a); i <= (b); ++ i)
#define REP(j, a, b) for(int j = (a); j <= (b); ++ j)
#define PER(i, a, b) for(int i = (a); i >= (b); -- i)
using namespace std;
const int maxn=2e5+5;
const int mod=1e9+7;
template <class T>
inline void rd(T &ret){
    char c;
    ret = 0;
    while ((c = getchar()) < 0 || c > 9);
    while (c >= 0 && c <= 9){
        ret = ret * 10 + (c - 0), c = getchar();
    }
}
int n,l,r;
long long dp[maxn][5];
int main()
{
    rd(n),rd(l),rd(r);
    int u=r/3-(l-1)/3;
    int v=(r+2)/3-(l-1+2)/3;
    int w=(r+1)/3-(l-1+1)/3;
    dp[1][0]=u,dp[1][1]=v,dp[1][2]=w;
    REP(i,2,n){
        dp[i][0]=(dp[i-1][2]*v%mod+dp[i-1][1]*w%mod+dp[i-1][0]*u%mod)%mod;
        dp[i][1]=(dp[i-1][0]*v%mod+dp[i-1][1]*u%mod+dp[i-1][2]*w%mod)%mod;
        dp[i][2]=(dp[i-1][0]*w%mod+dp[i-1][1]*v%mod+dp[i-1][2]*u%mod)%mod;
    }
    cout<<dp[n][0]<<endl;
}

Ayoub and Lost Array