loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)
阿新 • • 發佈:2019-03-16
優化 || urn amp return bug [1] sin getchar()
題意
題目鏈接
Sol
\[f[i], f[j] + (h[i] - h[j])^2 + (w[i - 1] - w[j]))\]
然後直接套路斜率優化,發現\(k, x\)都不單調
寫個cdq就過了
辣雞noi.ac居然出裸題&&原題
#include<bits/stdc++.h> #define Pair pair<double, double> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define int long long #define LL long long #define db double #define Fin(x) {freopen(#x".in","r",stdin);} #define Fout(x) {freopen(#x".out","w",stdout);} using namespace std; const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e18 + 10; const double eps = 1e-9; template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;} template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;} template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;} template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);} template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;} template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;} template <typename A> inline void debug(A a){cout << a << '\n';} template <typename A> inline LL sqr(A x){return 1ll * x * x;} inline int read() { char c = getchar(); int x = 0, f = 1; while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();} while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar(); return x * f; } int N; struct Sta { int id; db h, w, x, y, f, ad; void Get() { x = 2 * h; y = f + h * h - w; } }a[MAXN], st[MAXN]; vector<Pair> v; int comp(const Sta &a, const Sta &b) { return a.id < b.id; } double GetK(Pair a, Pair b) { if((b.fi - a.fi) < eps) return INF; return (b.se - a.se) / (b.fi - a.fi); } int sid[MAXN], cur; void GetConvexHull(int l, int r) { while(cur) sid[cur--] = 0; v.clear(); for(int i = l; i <= r; i++) { double x = a[i].x, y = a[i].y; while((v.size() > 1 && ((GetK(v[v.size() - 1], MP(x, y)) < GetK(v[v.size() - 2], v[v.size() - 1])))) || ((v.size() > 0) && (v[v.size() - 1].fi == x) && (v[v.size() - 1].se >= y))) v.pop_back(), sid[cur--] = 0; v.push_back(MP(x, y)); sid[++cur] = a[i].id; } } int cnt = 0; db Find(int id, db k) { int tmp = v.size(); int l = 0, r = v.size() - 1, ans = 0; while(l <= r) { int mid = l + r >> 1; if((mid == v.size() - 1) || (GetK(v[mid], v[mid + 1]) > k)) r = mid - 1, ans = mid; else l = mid + 1; } return v[ans].se - k * v[ans].fi; } void CDQ(int l, int r) { if(l == r) { a[l].Get(); return ; } int mid = l + r >> 1; CDQ(l, mid); GetConvexHull(l, mid); for(int i = mid + 1; i <= r; i++) { chmin(a[i].f, Find(i, a[i].h) + a[i].ad); } CDQ(mid + 1, r); int tl = l, tr = mid + 1, tot = tl - 1; while(tl <= mid || tr <= r) { if((tr > r) || (tl <= mid && a[tl].x < a[tr].x)) st[++tot] = a[tl++];//?????tl <= mid else st[++tot] = a[tr++]; } for(int i = l; i <= r; i++) a[i] = st[i]; } signed main() { N = read(); for(int i = 1; i <= N; i++) a[i].h = read(); for(int i = 1; i <= N; i++) { a[i].w = read() + a[i - 1].w; a[i].id = i; a[i].f = a[i - 1].f + sqr(a[i].h - a[i - 1].h); a[i].ad = sqr(a[i].h) + a[i - 1].w; if(i == 1) a[1].f = 0; } CDQ(1, N); sort(a + 1, a + N + 1, comp); // for(int i = 1; i <= N; i++) cout << i << ' ' << (LL)a[i].f << '\n'; cout << (LL)a[N].f; return 0; }
loj#2483. 「CEOI2017」Building Bridges(dp cdq 凸包)