UVA 10844 - Bloques (第二類斯特靈數)
阿新 • • 發佈:2019-05-02
pro 壓縮 i++ ring styles () sub comm show
代碼:
UVA 10844 - Bloques
題目鏈接
題意:給定n個數字,問這n個數字能分成子集分成有幾種分法
思路:一開始先想了個狀態。dp[i][j]表示放i個數字,分成j個集合的方案,那麽轉移為,從dp[i - 1][j - 1]在多一個集合。和從dp[i - 1][j]有j個位置放,那麽轉移方程為dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j] * j;按理說這個狀態轉移是沒問題的。可是因為這題答案是高精度,n為900時答案高達1700多位。加上高精度運算結果就超時了,後面知道這樣的是bell數。是能夠通過楊輝三角推出來的。詳細就是一個數字等於楊輝三角的左邊和左上邊相加,這樣狀態轉移變成純高精度加法,然後把高精度加法運算進行壓縮位的高精度運算,勉強通過了
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
using namespace std;
const int MAXN = 1800;
struct bign {
int len, num[MAXN];
bign () {
len = 0;
memset(num, 0, sizeof(num));
}
bign (int number) {*this = number;}
bign (const char* number) {*this = number;}
void DelZero ();
void Put ();
void operator = (int number);
void operator = (char* number);
bool operator < (const bign& b) const;
bool operator > (const bign& b) const { return b < *this; }
bool operator <= (const bign& b) const { return !(b < *this); }
bool operator >= (const bign& b) const { return !(*this < b); }
bool operator != (const bign& b) const { return b < *this || *this < b;}
bool operator == (const bign& b) const { return !(b != *this); }
void operator ++ ();
void operator -- ();
bign operator + (const int& b);
bign operator + (const bign& b);
bign operator - (const int& b);
bign operator - (const bign& b);
bign operator * (const int& b);
bign operator * (const bign& b);
bign operator / (const int& b);
//bign operator / (const bign& b);
int operator % (const int& b);
};
/*Code*/
const int N = 905;
int n;
bign dp[2][N], ans[N];
void init() {
int pre = 1, now = 0;
dp[now][1] = 1; ans[1] = 1;
for (int i = 2; i <= 900; i++) {
swap(now, pre);
dp[now][1] = dp[pre][i - 1];
for (int j = 2; j <= i; j++)
dp[now][j] = dp[now][j - 1] + dp[pre][j - 1];
ans[i] = dp[now][i];
}
}
int main() {
init();
while (~scanf("%d", &n) && n) {
printf("%d, ", n);
ans[n].Put(); printf("\n");
}
return 0;
}
void bign::DelZero () {
while (len && num[len-1] == 0)
len--;
if (len == 0) {
num[len++] = 0;
}
}
void bign::Put () {
printf("%d", num[len - 1]);
for (int i = len-2; i >= 0; i--)
printf("%08d", num[i]);
}
void bign::operator = (char* number) {
len = strlen (number);
for (int i = 0; i < len; i++)
num[i] = number[len-i-1] - ‘0‘;
DelZero ();
}
void bign::operator = (int number) {
len = 0;
while (number) {
num[len++] = number%10;
number /= 10;
}
DelZero ();
}
bool bign::operator < (const bign& b) const {
if (len != b.len)
return len < b.len;
for (int i = len-1; i >= 0; i--)
if (num[i] != b.num[i])
return num[i] < b.num[i];
return false;
}
void bign::operator ++ () {
int s = 1;
for (int i = 0; i < len; i++) {
s = s + num[i];
num[i] = s % 10;
s /= 10;
if (!s) break;
}
while (s) {
num[len++] = s%10;
s /= 10;
}
}
void bign::operator -- () {
if (num[0] == 0 && len == 1) return;
int s = -1;
for (int i = 0; i < len; i++) {
s = s + num[i];
num[i] = (s + 10) % 10;
if (s >= 0) break;
}
DelZero ();
}
bign bign::operator + (const int& b) {
bign a = b;
return *this + a;
}
bign bign::operator + (const bign& b) {
int bignSum = 0;
bign ans;
for (int i = 0; i < len || i < b.len; i++) {
if (i < len) bignSum += num[i];
if (i < b.len) bignSum += b.num[i];
ans.num[ans.len++] = bignSum % 100000000;
bignSum /= 100000000;
}
while (bignSum) {
ans.num[ans.len++] = bignSum % 100000000;
bignSum /= 100000000;
}
return ans;
}
bign bign::operator - (const int& b) {
bign a = b;
return *this - a;
}
bign bign::operator - (const bign& b) {
int bignSub = 0;
bign ans;
for (int i = 0; i < len || i < b.len; i++) {
bignSub += num[i];
bignSub -= b.num[i];
ans.num[ans.len++] = (bignSub + 10) % 10;
if (bignSub < 0) bignSub = -1;
}
ans.DelZero ();
return ans;
}
bign bign::operator * (const int& b) {
int bignSum = 0;
bign ans;
ans.len = len;
for (int i = 0; i < len; i++) {
bignSum += num[i] * b;
ans.num[i] = bignSum % 10;
bignSum /= 10;
}
while (bignSum) {
ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
}
return ans;
}
bign bign::operator * (const bign& b) {
bign ans;
ans.len = 0;
for (int i = 0; i < len; i++){
int bignSum = 0;
for (int j = 0; j < b.len; j++){
bignSum += num[i] * b.num[j] + ans.num[i+j];
ans.num[i+j] = bignSum % 10;
bignSum /= 10;
}
ans.len = i + b.len;
while (bignSum){
ans.num[ans.len++] = bignSum % 10;
bignSum /= 10;
}
}
return ans;
}
bign bign::operator / (const int& b) {
bign ans;
int s = 0;
for (int i = len-1; i >= 0; i--) {
s = s * 10 + num[i];
ans.num[i] = s/b;
s %= b;
}
ans.len = len;
ans.DelZero ();
return ans;
}
int bign::operator % (const int& b) {
bign ans;
int s = 0;
for (int i = len-1; i >= 0; i--) {
s = s * 10 + num[i];
ans.num[i] = s/b;
s %= b;
}
return s;
}
UVA 10844 - Bloques (第二類斯特靈數)