《DSP using MATLAB》Problem 7.30
阿新 • • 發佈:2019-05-09
設計 esp xlabel pri dsp name 通過 除了 put
代碼:
%% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output Info about this m-file fprintf(‘\n***********************************************************\n‘); fprintf(‘ <DSP using MATLAB> Problem 7.30 \n\n‘); banner(); %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ % bandstop, Length MUST be odd number. wp1 = 0.3*pi; ws1 = 0.4*pi; ws2 = 0.6*pi; wp2 = 0.7*pi; As = 50; Rp = 0.2; [delta1, delta2] = db2delta(Rp, As); deltaH = max(delta1,delta2); deltaL = min(delta1,delta2); f = [wp1, ws1, ws2, wp2]/pi; m = [1, 0, 1]; delta = [delta1, delta2, delta1]; [N, f, m, weights] = firpmord(f, m, delta); N h = firpm(N, f, m, weights); [db, mag, pha, grd, w] = freqz_m(h, [1]); delta_w = 2*pi/1000; wp1i = floor(wp1/delta_w)+1; ws1i = floor(ws1/delta_w)+1; ws2i = floor(ws2/delta_w)+1; wp2i = floor(wp2/delta_w)+1; Asd = -max(db(ws1i : 1 : ws2i)) M = N + 1 l = 0:M-1; %% -------------------------------------------------- %% Type-1 BPF %% -------------------------------------------------- [Hr, ww, a, L] = Hr_Type1(h); Rp = -(min(db(1:1: wp1i))); % Actual Passband Ripple fprintf(‘\nActual Passband Ripple is %.4f dB.\n‘, Rp); As = -round(max(db(ws1i : 1 : ws2i))); % Min Stopband attenuation fprintf(‘\nMin Stopband attenuation is %.4f dB.\n‘, As); [delta1_db, delta2_db] = db2delta(Rp, As) % Plot figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 7.30 h(n), Parks-McClellan Method‘) set(gcf,‘Color‘,‘white‘); subplot(2,2,1); stem([0:M-1], h); axis([0 M-1 -0.3 0.7]); grid on; xlabel(‘n‘); ylabel(‘h(n)‘); title(‘Actual Impulse Response, M=47‘); subplot(2,2,2); plot(w/pi, db); axis([0 1 -90 10]); grid on; set(gca,‘YTickMode‘,‘manual‘,‘YTick‘,[-51,-9,0]) set(gca,‘YTickLabelMode‘,‘manual‘,‘YTickLabel‘,[‘51‘;‘ 9‘;‘ 0‘]); set(gca,‘XTickMode‘,‘manual‘,‘XTick‘,[0,0.3,0.4,0.6,0.7,1]); xlabel(‘frequency in \pi units‘); ylabel(‘Decibels‘); title(‘Magnitude Response in dB‘); subplot(2,2,3); plot(ww/pi, Hr); axis([0, 1, -0.2, 1.2]); grid on; xlabel(‘frequency in \pi nuits‘); ylabel(‘Hr(w)‘); title(‘Amplitude Response‘); set(gca,‘XTickMode‘,‘manual‘,‘XTick‘,[0,0.3,0.4,0.6,0.7,1]) set(gca,‘YTickMode‘,‘manual‘,‘YTick‘,[0,1]); subplot(2,2,4); pb1w = ww(1:1:wp1i)/pi; pb1e = Hr(1:1:wp1i)-1; sbw = ww(ws1i:ws2i)/pi; sbe = Hr(ws1i:ws2i); pb2w = ww(wp2i:501)/pi; pb2e = Hr(wp2i:501)-1; plot(pb1w,pb1e*(delta2/delta1), sbw,sbe, pb2w,pb2e*(delta2/delta1)); % weighted error % plot(pb1w,pb1e, sbw,sbe, pb2w,pb2e); % error axis([0, 1, -deltaL, deltaL]); grid on; xlabel(‘frequency in \pi units‘); ylabel(‘Hr(w)‘); title(‘Weighted Error‘); %title(‘Error Response‘); set(gca,‘XTickMode‘,‘manual‘,‘XTick‘,f) set(gca,‘YTickMode‘,‘manual‘,‘YTick‘,[-deltaL, 0,deltaL]); set(gca,‘XGrid‘,‘on‘,‘YGrid‘,‘on‘) figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 7.30 Parks-McClellan Method‘) set(gcf,‘Color‘,‘white‘); subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -90 10]); set(gca,‘YTickMode‘,‘manual‘,‘YTick‘,[-51,-9,0]) set(gca,‘YTickLabelMode‘,‘manual‘,‘YTickLabel‘,[‘51‘;‘ 9‘;‘ 0‘]); set(gca,‘XTickMode‘,‘manual‘,‘XTick‘,[0,0.3,0.4,0.6,0.7,1,1.3,1.4,1.6,1.7,2]); xlabel(‘frequency in \pi units‘); ylabel(‘Decibels‘); title(‘Magnitude Response in dB‘); subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); xlabel(‘frequency in \pi units‘); ylabel(‘Absolute‘); title(‘Magnitude Response in absolute‘); set(gca,‘XTickMode‘,‘manual‘,‘XTick‘,[0,0.3,0.4,0.6,0.7,1,1.3,1.4,1.6,1.7,2]); set(gca,‘YTickMode‘,‘manual‘,‘YTick‘,[0,1.0]); subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); xlabel(‘frequency in \pi units‘); ylabel(‘Rad‘); title(‘Phase Response in Radians‘); subplot(2,2,4); plot(w/pi, grd*pi/180); grid on; %axis([0 1 -100 10]); xlabel(‘frequency in \pi units‘); ylabel(‘Rad‘); title(‘Group Delay‘); figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 7.30 AmpRes of h(n), Parks-McClellan Method‘) set(gcf,‘Color‘,‘white‘); plot(ww/pi, Hr); grid on; %axis([0 1 -100 10]); xlabel(‘frequency in \pi units‘); ylabel(‘Hr‘); title(‘Amplitude Response‘); set(gca,‘YTickMode‘,‘manual‘,‘YTick‘,[-delta2_db ,0,delta2_db , 1-delta1_db, 1, 1+delta1_db]); set(gca,‘XTickMode‘,‘manual‘,‘XTick‘,[0,0.3,0.4,0.6,0.7,1]); n = [0:1:300]; x = 5-5*cos(pi*n/2); y = filter(h,1,x); figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 7.30 x(n) and y(n)‘) set(gcf,‘Color‘,‘white‘); subplot(3,1,1); stem([0:M-1], h); axis([0 M-1 -0.3 0.7]); grid on; xlabel(‘n‘); ylabel(‘h(n)‘); title(‘Actual Impulse Response, M=47‘); subplot(3,1,2); stem(n, x); axis([0 300 0 10]); grid on; xlabel(‘n‘); ylabel(‘x(n)‘); title(‘Input sequence‘); subplot(3,1,3); stem(n, y); axis([0 100 -5 7]); grid on; xlabel(‘n‘); ylabel(‘y(n)‘); title(‘Output sequence‘); % --------------------------- % DTFT of x % --------------------------- MM = 500; [X, w1] = dtft1(x, n, MM); [Y, w1] = dtft1(y, n, MM); magX = abs(X); angX = angle(X); realX = real(X); imagX = imag(X); magY = abs(Y); angY = angle(Y); realY = real(Y); imagY = imag(Y); figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 7.30 DTFT of x(n)‘) set(gcf,‘Color‘,‘white‘); subplot(2,2,1); plot(w1/pi,magX); grid on; %axis([0,2,0,15]); title(‘Magnitude Part‘); xlabel(‘frequency in \pi units‘); ylabel(‘Magnitude |X|‘); subplot(2,2,3); plot(w1/pi, angX/pi); grid on; axis([0,2,-1,1]); title(‘Angle Part‘); xlabel(‘frequency in \pi units‘); ylabel(‘Radians/\pi‘); subplot(‘2,2,2‘); plot(w1/pi, realX); grid on; title(‘Real Part‘); xlabel(‘frequency in \pi units‘); ylabel(‘Real‘); subplot(‘2,2,4‘); plot(w1/pi, imagX); grid on; title(‘Imaginary Part‘); xlabel(‘frequency in \pi units‘); ylabel(‘Imaginary‘); figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 7.30 DTFT of y(n)‘) set(gcf,‘Color‘,‘white‘); subplot(2,2,1); plot(w1/pi,magY); grid on; %axis([0,2,0,15]); title(‘Magnitude Part‘); xlabel(‘frequency in \pi units‘); ylabel(‘Magnitude |Y|‘); subplot(2,2,3); plot(w1/pi, angY/pi); grid on; axis([0,2,-1,1]); title(‘Angle Part‘); xlabel(‘frequency in \pi units‘); ylabel(‘Radians/\pi‘); subplot(‘2,2,2‘); plot(w1/pi, realY); grid on; title(‘Real Part‘); xlabel(‘frequency in \pi units‘); ylabel(‘Real‘); subplot(‘2,2,4‘); plot(w1/pi, imagY); grid on; title(‘Imaginary Part‘); xlabel(‘frequency in \pi units‘); ylabel(‘Imaginary‘); figure(‘NumberTitle‘, ‘off‘, ‘Name‘, ‘Problem 7.30 Magnitude Response‘) set(gcf,‘Color‘,‘white‘); subplot(1,2,1); plot(w1/pi,magX); grid on; %axis([0,2,0,15]); title(‘Magnitude Part of Input‘); xlabel(‘frequency in \pi units‘); ylabel(‘Magnitude |X|‘); subplot(1,2,2); plot(w1/pi,magY); grid on; %axis([0,2,0,15]); title(‘Magnitude Part of Output‘); xlabel(‘frequency in \pi units‘); ylabel(‘Magnitude |Y|‘);
運行結果:
濾波器長度M=47,阻帶衰減滿足設計指標。
幅度譜和相位譜
振幅譜,把阻帶、通帶放大,數數極值點的個數。
下圖,9個極值點
下圖,8個極值點
下圖,9個極值點
總共有9+8+9=26個極值點,M=47,L=(M-1)/2=23,0到π上,最多L+3=26個極值點。
輸入輸出序列
輸入序列的譜,註意0.5π的頻率分量,通過帶阻濾波後消除了。
輸出序列的譜,0.5π分量濾除了。
濾波前後幅度譜對比
《DSP using MATLAB》Problem 7.30