SC3 | 拉普拉斯矩陣 | Laplacian matrix | 圖論 | 聚類 | R代碼
阿新 • • 發佈:2019-05-17
pac svm format active ioc obj ascend calc ive
最近在看SC3聚類這篇文章,SC3使用了這個工具。
All distance matrices are then transformed using either principal component analysis (PCA) or by calculating the eigenvectors of the associated graph Laplacian (L = I – D–1/2AD–1/2, where I is the identity matrix, A is a similarity matrix (A = e–A′/max(A′)), where A′ is a distance matrix) and D is the degree matrix of A, a diagonal matrix that contains the row-sums of A on the diagonal (Dii = ΣjAij). The columns of the resulting matrices are then sorted in ascending order by their corresponding eigenvalues.
先看下該工具的功能:SC3 package manual
跑一下常規代碼:
library(SingleCellExperiment) library(SC3) library(scater) head(ann) yan[1:3, 1:3] # create a SingleCellExperiment object sce <- SingleCellExperiment( assays = list( counts = as.matrix(yan), logcounts = log2(as.matrix(yan) + 1) ), colData = ann ) # define feature names in feature_symbol column rowData(sce)$feature_symbol <- rownames(sce) # remove features with duplicated names sce <- sce[!duplicated(rowData(sce)$feature_symbol), ] # define spike-ins isSpike(sce, "ERCC") <- grepl("ERCC", rowData(sce)$feature_symbol) plotPCA(sce, colour_by = "cell_type1") sce <- sc3(sce, ks = 2:4, biology = TRUE) # sc3_interactive(sce) # sc3_export_results_xls(sce) ###################################### sce <- sc3_prepare(sce) sce <- sc3_estimate_k(sce) sce <- sc3_calc_dists(sce) names(metadata(sce)$sc3$distances) sce <- sc3_calc_transfs(sce) names(metadata(sce)$sc3$transformations) metadata(sce)$sc3$distances sce <- sc3_kmeans(sce, ks = 2:4) names(metadata(sce)$sc3$kmeans) col_data <- colData(sce) head(col_data[ , grep("sc3_", colnames(col_data))]) sce <- sc3_calc_consens(sce) names(metadata(sce)$sc3$consensus) names(metadata(sce)$sc3$consensus$`3`) col_data <- colData(sce) head(col_data[ , grep("sc3_", colnames(col_data))]) sce <- sc3_calc_biology(sce, ks = 2:4) sce <- sc3_run_svm(sce, ks = 2:4) col_data <- colData(sce) head(col_data[ , grep("sc3_", colnames(col_data))])
接下來會嘗試拆一下該工具。
先開題,待續~
參考:
拉普拉斯矩陣(Laplacian matrix)
SC3 | 拉普拉斯矩陣 | Laplacian matrix | 圖論 | 聚類 | R代碼