1. 程式人生 > >機器學習專案實戰----泰坦尼克號獲救預測(二)

機器學習專案實戰----泰坦尼克號獲救預測(二)

四、特徵重要性衡量

通過上面可以發現準確率有小幅提升,但是似乎得到的結果還是不太理想。我們可以發現模型似乎優化的差不多了,使用的特徵似乎也已經使用完了。準確率已經達到了瓶頸,但是如果我們還想提高精度的話,還是要回到最原始的資料集裡面。對分類器的結果最大的影響還是輸入的資料本身。接下來採用的方法一般是從原始的資料集裡面構造出新的特徵。新增特徵,家庭成員數和名字長度。

# Generating a familysize column
titanic["FamilySize"] = titanic["SibSp"] + titanic["Parch"]

# The .apply method generates a new series
titanic["NameLength"] = titanic["Name"].apply(lambda x: len(x))

提取名字(名字裡麵包含稱呼,如小姐,女士,先生等等),這些稱呼也是有可能對結果產生影響的。

import re


# A function to get the title from a name.
def get_title(name):
    # Use a regular expression to search for a title.
    # Titles always consist of capital and lowercase letters, and end with a period.
    title_search = re.search(' ([A-Za-z]+)\.', name)
    # If the title exists, extract and return it.
    if title_search:
        return title_search.group(1)
    return ""


# Get all the titles and print how often each one occurs.
titles = titanic["Name"].apply(get_title)
print(pandas.value_counts(titles))

# Map each title to an integer.  Some titles are very rare, and are compressed into the same codes as other titles.
title_mapping = {
    "Mr": 1,
    "Miss": 2,
    "Mrs": 3,
    "Master": 4,
    "Dr": 5,
    "Rev": 6,
    "Major": 7,
    "Col": 7,
    "Mlle": 8,
    "Mme": 8,
    "Don": 9,
    "Lady": 10,
    "Countess": 10,
    "Jonkheer": 10,
    "Sir": 9,
    "Capt": 7,
    "Ms": 2
}
for k, v in title_mapping.items():
    titles[titles == k] = v

# Verify that we converted everything.
# 驗證我們是否轉換了所有內容
print(pandas.value_counts(titles))

# Add in the title column.
titanic["Title"] = titles

得到的結果,發現前三個稱呼佔據資料集的一大半,毫無疑問,這個特徵對結果也是有較大影響的。

Mr          517
Miss        182
Mrs         125
Master       40
Dr            7
Rev           6
Major         2
Mlle          2
Col           2
Sir           1
Mme           1
Lady          1
Countess      1
Capt          1
Ms            1
Don           1
Jonkheer      1
Name: Name, dtype: int64
1     517
2     183
3     125
4      40
5       7
6       6
7       5
10      3
8       3
9       2
Name: Name, dtype: int64

通過前面的步驟發現特徵有點太多了,我們可以通過特徵的重要性來篩選出哪些特徵比較重要,而隨機森林的好處就是特徵重要性衡量。

特徵重要性解釋:在機器學習的訓練過程中,對於多個特徵來說,假如要對其中某一個特徵來衡量它的重要性,我們就不用這個特徵的資料來進行訓練,而是把這個特徵裡面的資料全部替換為噪音資料,假如得到的準確率沒有太大的變化,那就說明這個特徵其實不那麼重要,如果得到的準確率相差太大的話,說明這個特徵很重要。其他特徵的重要衡量以此類推。

import numpy as np
from sklearn.feature_selection import SelectKBest, f_classif # 選擇最好特徵
import matplotlib.pyplot as plt
predictors = [
    "Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked", "FamilySize",
    "Title", "NameLength"
]

# Perform feature selection
# 執行特徵選擇
selector = SelectKBest(f_classif, k=5)
selector.fit(titanic[predictors], titanic["Survived"])

# Get the raw p-values for each feature, and transform from p-values into scores
scores = -np.log10(selector.pvalues_)

# Plot the scores.  See how "Pclass", "Sex", "Title", and "Fare" are the best?
plt.bar(range(len(predictors)), scores)
plt.xticks(range(len(predictors)), predictors, rotation='vertical')
plt.show()

# Pick only the four best features.
# 只選擇4個最好的特徵
predictors = ["Pclass", "Sex", "Fare", "Title"]

alg = RandomForestClassifier(random_state=1,
                             n_estimators=50,
                             min_samples_split=8,
                             min_samples_leaf=4)

得到的結果為:

  

上圖就是特徵重要性的一個柱狀圖,發現Age等一些特徵好像影響不大,和剛開始的假設有較大出入,那麼這些沒用的特徵就可以刪除掉,只保留有用的特徵即可。

五、整合演算法

使用整合演算法來提升準確率

from sklearn.ensemble import GradientBoostingClassifier
import numpy as np

# The algorithms we want to ensemble.
# We're using the more linear predictors for the logistic regression, and everything with the gradient boosting classifier.
algorithms = [
    [GradientBoostingClassifier(random_state=1, n_estimators=25, max_depth=3), ["Pclass", "Sex", "Age", "Fare", "Embarked", "FamilySize", "Title",]],
    [LogisticRegression(random_state=1,solver='liblinear'), ["Pclass", "Sex", "Fare", "FamilySize", "Title", "Age", "Embarked"]]
]

# Initialize the cross validation folds
kf = KFold(n_splits=3,shuffle=False, random_state=1)

predictions = []
for train, test in kf.split(titanic):
    train_target = titanic["Survived"].iloc[train]
    full_test_predictions = []
    # Make predictions for each algorithm on each fold
    for alg, predictors in algorithms:
        # Fit the algorithm on the training data.
        alg.fit(titanic[predictors].iloc[train,:], train_target)
        # Select and predict on the test fold.  
        # The .astype(float) is necessary to convert the dataframe to all floats and avoid an sklearn error.
        test_predictions = alg.predict_proba(titanic[predictors].iloc[test,:].astype(float))[:,1]
        full_test_predictions.append(test_predictions)
    # Use a simple ensembling scheme -- just average the predictions to get the final classification.
    test_predictions = (full_test_predictions[0] + full_test_predictions[1]) / 2  # 兩個分類器的平均結果
    # Any value over .5 is assumed to be a 1 prediction, and below .5 is a 0 prediction.
    test_predictions[test_predictions <= .5] = 0
    test_predictions[test_predictions > .5] = 1
    predictions.append(test_predictions)

# Put all the predictions together into one array.
# 將所有的預測放在一個數組中
predictions = np.concatenate(predictions, axis=0)

# Compute accuracy by comparing to the training data.
accuracy = sum(predictions == titanic["Survived"]) / len(predictions)
print(accuracy)

得到的準確率為:

0.8215488215488216

接下來用測試資料集來進行預測(注意:在測試資料集裡面沒有"Survived"這一列,所以我們得不到測試結果的準確率,只能進行預測)

titles = titanic_test["Name"].apply(get_title)
# We're adding the Dona title to the mapping, because it's in the test set, but not the training set
title_mapping = {
    "Mr": 1,
    "Miss": 2,
    "Mrs": 3,
    "Master": 4,
    "Dr": 5,
    "Rev": 6,
    "Major": 7,
    "Col": 7,
    "Mlle": 8,
    "Mme": 8,
    "Don": 9,
    "Lady": 10,
    "Countess": 10,
    "Jonkheer": 10,
    "Sir": 9,
    "Capt": 7,
    "Ms": 2,
    "Dona": 10
}
for k, v in title_mapping.items():
    titles[titles == k] = v
titanic_test["Title"] = titles
# Check the counts of each unique title.
print(pandas.value_counts(titanic_test["Title"]))

# Now, we add the family size column.
titanic_test["FamilySize"] = titanic_test["SibSp"] + titanic_test["Parch"]

得到測試資料集裡面Name裡面稱呼的次數:

1     240
2      79
3      72
4      21
7       2
6       2
10      1
5       1
Name: Title, dtype: int64

最終對測試資料集裡面的乘客能否獲救進行預測

predictors = [
    "Pclass", "Sex", "Age", "Fare", "Embarked", "FamilySize", "Title"
]

algorithms = [
    [
        GradientBoostingClassifier(random_state=1,
                                   n_estimators=25,
                                   max_depth=3), predictors
    ],
    [
        LogisticRegression(random_state=1, solver='liblinear'),
        ["Pclass", "Sex", "Fare", "FamilySize", "Title", "Age", "Embarked"]
    ]
]

full_predictions = []
for alg, predictors in algorithms:
    # Fit the algorithm using the full training data.
    alg.fit(titanic[predictors], titanic["Survived"])
    # Predict using the test dataset.  We have to convert all the columns to floats to avoid an error.
    predictions = alg.predict_proba(
        titanic_test[predictors].astype(float))[:, 1]
    predictions[predictions <= .5] = 0
    predictions[predictions > .5] = 1
    full_predictions.append(predictions)

# The gradient boosting classifier generates better predictions, so we weight it higher.
# predictions = (full_predictions[0] * 3 + full_predictions[1]) / 4
predictions

得到的結果(1表示能夠獲救,0表示不能被獲救):

array([0., 0., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 0., 1., 1., 0.,
       0., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 1.,
       0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 1., 0., 0.,
       0., 1., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 1., 1., 0.,
       0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 0., 0., 0., 0., 0.,
       0., 1., 1., 1., 1., 1., 0., 1., 0., 0., 0., 1., 0., 1., 0., 1., 0.,
       0., 0., 1., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 1., 0.,
       1., 1., 0., 1., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0.,
       0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
       0., 0., 0., 1., 1., 0., 1., 1., 0., 1., 0., 0., 1., 0., 0., 1., 1.,
       0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 0., 1., 0., 1., 0., 1.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 1., 0., 1., 1.,
       0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 1., 0., 1., 0., 1.,
       0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
       1., 1., 1., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1., 0., 0.,
       0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0.,
       1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 0.,
       0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 1.,
       0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.,
       0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 1., 0., 1., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 1.,
       0., 0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0., 0.,
       1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1.,
       1., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0.,
       1., 1., 1., 1., 1., 0., 1., 0., 0., 0.])

 六、總結

首先考慮資料集裡面的所有特徵,儘可能提取出來對結果有影響的一些資訊。然後缺失值的處理,字元資料的對映,機器學習演算法的改變,模型引數的優化,最後使用整合演算法提升準確率。還包括對資料集的特徵重要性的衡量和篩選。

&n