1. 程式人生 > >使用關鍵點進行小目標檢測

使用關鍵點進行小目標檢測

【GiantPandaCV導語】本文是筆者出於興趣搞了一個小的庫,主要是用於定位紅外小目標。由於其具有尺度很小的特點,所以可以嘗試用點的方式代表其位置。本文主要採用了迴歸和heatmap兩種方式來回歸關鍵點,是一個很簡單基礎的專案,程式碼量很小,可供新手學習。 ## 1. 資料來源 **資料集**:資料來源自小武,經過小武的授權使用,但不會公開。本專案只用了其中很少一部分共108張圖片。 **標註工具**:https://github.com/pprp/landmark_annotation > 標註工具也可以在GiantPandaCV公眾號後臺回覆“landmark”關鍵字獲取 ![部分樣例展示](https://img-blog.csdnimg.cn/20200831212549491.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0REX1BQX0pK,size_16,color_FFFFFF,t_70#pic_center) 上圖是資料集中的兩張圖片,紅圈代表對應的目標,標註的時候只需要在其中心點一下即可得到該點對應的橫縱座標。 該資料集有一個特點,每張圖只有一個目標(不然沒法用簡單的方法迴歸),多餘一個目標的圖片被剔除了。 ```python 1 0.42 0.596 ``` 以上是一個標註檔案的例子,1.jpg對應1.txt ## 2. 迴歸確定關鍵點 迴歸確定關鍵點比較簡單,網路部分採用手工構建的一個兩層的小網路,訓練採用的是MSELoss。 這部分程式碼在:https://github.com/pprp/SimpleCVReproduction/tree/master/simple_keypoint/regression ### 2.1 資料載入 資料的組織比較簡單,按照以下格式組織: ```tcl - data - images - 1.jpg - 2.jpg - ... - labels - 1.txt - 2.txt - ... ``` 重寫一下Dataset類,用於載入資料集。 ```python class KeyPointDatasets(Dataset): def __init__(self, root_dir="./data", transforms=None): super(KeyPointDatasets, self).__init__() self.img_path = os.path.join(root_dir, "images") # self.txt_path = os.path.join(root_dir, "labels") self.img_list = glob.glob(os.path.join(self.img_path, "*.jpg")) self.txt_list = [item.replace(".jpg", ".txt").replace( "images", "labels") for item in self.img_list] if transforms is not None: self.transforms = transforms def __getitem__(self, index): img = self.img_list[index] txt = self.txt_list[index] img = cv2.imread(img) if self.transforms: img = self.transforms(img) label = [] with open(txt, "r") as f: for i, line in enumerate(f): if i == 0: # 第一行 num_point = int(line.strip()) else: x1, y1 = [(t.strip()) for t in line.split()] # range from 0 to 1 x1, y1 = float(x1), float(y1) tmp_label = (x1, y1) label.append(tmp_label) return img, torch.tensor(label[0]) def __len__(self): return len(self.img_list) @staticmethod def collect_fn(batch): imgs, labels = zip(*batch) return torch.stack(imgs, 0), torch.stack(labels, 0) ``` 返回的結果是圖片和對應座標位置。 ### 2.2 網路模型 ```python import torch import torch.nn as nn class KeyPointModel(nn.Module): def __init__(self): super(KeyPointModel, self).__init__() self.conv1 = nn.Conv2d(3, 6, 3, 1, 1) self.bn1 = nn.BatchNorm2d(6) self.relu1 = nn.ReLU(True) self.maxpool1 = nn.MaxPool2d((2, 2)) self.conv2 = nn.Conv2d(6, 12, 3, 1, 1) self.bn2 = nn.BatchNorm2d(12) self.relu2 = nn.ReLU(True) self.maxpool2 = nn.MaxPool2d((2, 2)) self.gap = nn.AdaptiveMaxPool2d(1) self.classifier = nn.Sequential( nn.Linear(12, 2), nn.Sigmoid() ) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.maxpool1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.maxpool2(x) x = self.gap(x) x = x.view(x.shape[0], -1) return self.classifier(x) ``` 其結構就是卷積+pooling+卷積+pooling+global average pooling+Linear,返回長度為2的tensor。 ### 2.3 訓練 ```python def train(model, epoch, dataloader, optimizer, criterion): model.train() for itr, (image, label) in enumerate(dataloader): bs = image.shape[0] output = model(image) loss = criterion(output, label) optimizer.zero_grad() loss.backward() optimizer.step() if itr % 4 == 0: print("epoch:%2d|step:%04d|loss:%.6f" % (epoch, itr, loss.item()/bs)) vis.plot_many_stack({"train_loss": loss.item()*100/bs}) total_epoch = 300 bs = 10 ######################################## transforms_all = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((360,480)), transforms.ToTensor(), transforms.Normalize(mean=[0.4372, 0.4372, 0.4373], std=[0.2479, 0.2475, 0.2485]) ]) datasets = KeyPointDatasets(root_dir="./data", transforms=transforms_all) data_loader = DataLoader(datasets, shuffle=True, batch_size=bs, collate_fn=datasets.collect_fn) model = KeyPointModel() optimizer = torch.optim.Adam(model.parameters(), lr=3e-4) # criterion = torch.nn.SmoothL1Loss() criterion = torch.nn.MSELoss() scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) for epoch in range(total_epoch): train(model, epoch, data_loader, optimizer, criterion) loss = test(model, epoch, data_loader, criterion) if epoch % 10 == 0: torch.save(model.state_dict(), "weights/epoch_%d_%.3f.pt" % (epoch, loss*1000)) ``` loss部分使用Smooth L1 loss或者MSE loss均可。 MSE Loss: $$ loss(x,y)=\frac{1}{n}\sum(x_i-y_i)^2 $$ Smooth L1 Loss: $$ smooth_{L_1}(x)= \begin{cases} 0.5x^2 & if |x|<1 \\ |x|-0.5 & otherwise \end{cases} $$ ### 2.4 測試結果 ![](https://img-blog.csdnimg.cn/20200831232436147.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0REX1BQX0pK,size_16,color_FFFFFF,t_70#pic_center) ## 3. heatmap確定關鍵點 這部分程式碼很多參考了CenterNet,不過曾經嘗試CenterNet中的loss在這個問題上收斂效果不好,所以參考了kaggle人臉關鍵點定位的解決方法,發現使用簡單的MSELoss效果就很好。 ### 3.1 資料載入 這部分和CenterNet構建heatmap的過程類似,不過半徑的確定是人工的。因為資料集中的目標都比較小,半徑的範圍最大不超過半徑為30個畫素的圓。 ```python class KeyPointDatasets(Dataset): def __init__(self, root_dir="./data", transforms=None): super(KeyPointDatasets, self).__init__() self.down_ratio = 1 self.img_w = 480 // self.down_ratio self.img_h = 360 // self.down_ratio self.img_path = os.path.join(root_dir, "images") self.img_list = glob.glob(os.path.join(self.img_path, "*.jpg")) self.txt_list = [item.replace(".jpg", ".txt").replace( "images", "labels") for item in self.img_list] if transforms is not None: self.transforms = transforms def __getitem__(self, index): img = self.img_list[index] txt = self.txt_list[index] img = cv2.imread(img) if self.transforms: img = self.transforms(img) label = [] with open(txt, "r") as f: for i, line in enumerate(f): if i == 0: # 第一行 num_point = int(line.strip()) else: x1, y1 = [(t.strip()) for t in line.split()] # range from 0 to 1 x1, y1 = float(x1), float(y1) cx, cy = x1 * self.img_w, y1 * self.img_h heatmap = np.zeros((self.img_h, self.img_w)) draw_umich_gaussian(heatmap, (cx, cy), 30) return img, torch.tensor(heatmap).unsqueeze(0) def __len__(self): return len(self.img_list) @staticmethod def collect_fn(batch): imgs, labels = zip(*batch) return torch.stack(imgs, 0), torch.stack(labels, 0) ``` 核心函式是draw_umich_gaussian,具體如下: ```python def gaussian2D(shape, sigma=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 # 限制最小的值 return h def draw_umich_gaussian(heatmap, center, radius, k=1): diameter = 2 * radius + 1 gaussian = gaussian2D((diameter, diameter), sigma=diameter / 6) # 一個圓對應內切正方形的高斯分佈 x, y = int(center[0]), int(center[1]) width, height = heatmap.shape left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left:radius + right] if min(masked_gaussian.shape) >
0 and min(masked_heatmap.shape) > 0: # TODO debug np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) # 將高斯分佈覆蓋到heatmap上,取最大,而不是疊加 return heatmap ``` sigma引數直接沿用了CenterNet中的設定,沒有調節這個超引數。 ### 3.2 網路結構 網路結構參考了知乎上一個復現YOLOv3中提到的模組,Sematic Embbed Block(SEB)用於上取樣部分,將來自低解析度的特徵圖進行上取樣,然後使用3x3卷積和1x1卷積統一通道個數,最後將低解析度特徵圖和高解析度特徵圖相乘得到融合結果。 ```python class SematicEmbbedBlock(nn.Module): def __init__(self, high_in_plane, low_in_plane, out_plane): super(SematicEmbbedBlock, self).__init__() self.conv3x3 = nn.Conv2d(high_in_plane, out_plane, 3, 1, 1) self.upsample = nn.UpsamplingBilinear2d(scale_factor=2) self.conv1x1 = nn.Conv2d(low_in_plane, out_plane, 1) def forward(self, high_x, low_x): high_x = self.upsample(self.conv3x3(high_x)) low_x = self.conv1x1(low_x) return high_x * low_x class KeyPointModel(nn.Module): """ downsample ratio=2 """ def __init__(self): super(KeyPointModel, self).__init__() self.conv1 = nn.Conv2d(3, 6, 3, 1, 1) self.bn1 = nn.BatchNorm2d(6) self.relu1 = nn.ReLU(True) self.maxpool1 = nn.MaxPool2d((2, 2)) self.conv2 = nn.Conv2d(6, 12, 3, 1, 1) self.bn2 = nn.BatchNorm2d(12) self.relu2 = nn.ReLU(True) self.maxpool2 = nn.MaxPool2d((2, 2)) self.conv3 = nn.Conv2d(12, 20, 3, 1, 1) self.bn3 = nn.BatchNorm2d(20) self.relu3 = nn.ReLU(True) self.maxpool3 = nn.MaxPool2d((2, 2)) self.conv4 = nn.Conv2d(20, 40, 3, 1, 1) self.bn4 = nn.BatchNorm2d(40) self.relu4 = nn.ReLU(True) self.seb1 = SematicEmbbedBlock(40, 20, 20) self.seb2 = SematicEmbbedBlock(20, 12, 12) self.seb3 = SematicEmbbedBlock(12, 6, 6) self.heatmap = nn.Conv2d(6, 1, 1) def forward(self, x): x1 = self.conv1(x) x1 = self.bn1(x1) x1 = self.relu1(x1) m1 = self.maxpool1(x1) x2 = self.conv2(m1) x2 = self.bn2(x2) x2 = self.relu2(x2) m2 = self.maxpool2(x2) x3 = self.conv3(m2) x3 = self.bn3(x3) x3 = self.relu3(x3) m3 = self.maxpool3(x3) x4 = self.conv4(m3) x4 = self.bn4(x4) x4 = self.relu4(x4) up1 = self.seb1(x4, x3) up2 = self.seb2(up1, x2) up3 = self.seb3(up2, x1) out = self.heatmap(up3) return out ``` 網路模型也是自己寫的小網路,用了四個卷積層,三個池化層,然後進行了三次上取樣。最終輸出解析度和輸入解析度相同。 ### 3.3 訓練過程 訓練過程和基於迴歸的方法幾乎一樣,程式碼如下: ```python datasets = KeyPointDatasets(root_dir="./data", transforms=transforms_all) data_loader = DataLoader(datasets, shuffle=True, batch_size=bs, collate_fn=datasets.collect_fn) model = KeyPointModel() if torch.cuda.is_available(): model = model.cuda() optimizer = torch.optim.Adam(model.parameters(), lr=3e-3) criterion = torch.nn.MSELoss() # compute_loss scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) for epoch in range(total_epoch): train(model, epoch, data_loader, optimizer, criterion, scheduler) loss = test(model, epoch, data_loader, criterion) if epoch % 5 == 0: torch.save(model.state_dict(), "weights/epoch_%d_%.3f.pt" % (epoch, loss*10000)) ``` 用的是MSELoss進行監督,訓練曲線如下: ![訓練過程中的loss曲線](https://img-blog.csdnimg.cn/20200901154922969.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0REX1BQX0pK,size_16,color_FFFFFF,t_70#pic_center) ### 3.4 測試過程 測試過程和CenterNet的推理過程一致,也用到了3x3的maxpooling來篩選極大值點 ```python for iter, (image, label) in enumerate(dataloader): # print(image.shape) bs = image.shape[0] hm = model(image) hm = _nms(hm) hm = hm.detach().numpy() for i in range(bs): hm = hm[i] hm = np.maximum(hm, 0) hm = hm/np.max(hm) hm = normalization(hm) hm = np.uint8(255 * hm) hm = hm[0] # heatmap = torch.sigmoid(heatmap) # hm = cv2.cvtColor(hm, cv2.COLOR_RGB2BGR) hm = cv2.applyColorMap(hm, cv2.COLORMAP_JET) cv2.imwrite("./test_output/output_%d_%d.jpg" % (iter, i), hm) cv2.waitKey(0) ``` 以上的nms和topk程式碼都在CenterNet系列最後一篇講過了。這裡直接對模型輸出結果使用nms,然後進行視覺化,結果如下: ![放大結果](https://img-blog.csdnimg.cn/20200901194910760.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0REX1BQX0pK,size_16,color_FFFFFF,t_70#pic_center) 上圖中白色的點就是目標位置,為了更形象的檢視結果,detect.py部分負責視覺化。 ### 3.5 視覺化 視覺化的問題經常遇見,比如CAM、Grad CAM等視覺化特徵圖的時候就會碰到。以下是視覺化的一個簡單的方法(參考了CSDN的一位博主的方案,具體連結因太過久遠找不到了)。 ![視覺化流程](https://img-blog.csdnimg.cn/20200901200044550.png#pic_center) 具體實現程式碼如下: ```python def normalization(data): _range = np.max(data) - np.min(data) return (data - np.min(data)) / _range heatmap = model(img_tensor_list) heatmap = heatmap.squeeze().cpu() for i in range(bs): img_path = img_list[i] img = cv2.imread(img_path) img = cv2.resize(img, (480, 360)) single_map = heatmap[i] hm = single_map.detach().numpy() hm = np.maximum(hm, 0) hm = hm/np.max(hm) hm = normalization(hm) hm = np.uint8(255 * hm) hm = cv2.applyColorMap(hm, cv2.COLORMAP_JET) hm = cv2.resize(hm, (480, 360)) superimposed_img = hm * 0.2 + img coord_x, coord_y = landmark_coord[i] cv2.circle(superimposed_img, (int(coord_x), int(coord_y)), 2, (0, 0, 0), thickness=-1) cv2.imwrite("./output2/%s_out.jpg" % (img_name_list[i]), superimposed_img) ``` 注意通過處理以後的hm和原圖疊加的時候0.2只是一個參考值,這個值既不會影響原圖顯示又能將heatmap中重點關注的位置可視化出來。 結果如下: ![視覺化結果](https://img-blog.csdnimg.cn/20200901201118450.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0REX1BQX0pK,size_16,color_FFFFFF,t_70#pic_center) 可以看到,定位結果要比迴歸更準一些,圖中黑色點是獲取到最終座標的位置,幾乎和目標是重疊的狀態,效果比較理想。 ## 4. 總結 筆者做這個小專案初心是想搞清楚如何用關鍵點進行定位的,關鍵點被用在很多領域比如人臉關鍵點定位、車牌定位、人體姿態檢測、目標檢測等等領域。當時用小武的資料的時候,發現這個資料集的特點就是目標很小,比較適合用關鍵點來做。之後又開始陸陸續續看CenterNet原始碼,借鑑了其中很多程式碼,這才完成了這個小專案。 由於本人水平有限,可能使用heatmap進行關鍵點定位的方式有些地方並不合理,是東拼西湊而成的,如果有建議可以新增筆者微信top