TensorFlow繪製loss/accuracy曲線的例項
阿新 • • 發佈:2020-01-24
1. 多曲線
1.1 使用pyplot方式
import numpy as np import matplotlib.pyplot as plt x = np.arange(1,11,1) plt.plot(x,x * 2,label="First") plt.plot(x,x * 3,label="Second") plt.plot(x,x * 4,label="Third") plt.legend(loc=0,ncol=1) # 引數:loc設定顯示的位置,0是自適應;ncol設定顯示的列數 plt.show()
1.2 使用面向物件方式
import numpy as np import matplotlib.pyplot as plt x = np.arange(1,1) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,label="First") ax.plot(x,label="Second") ax.legend(loc=0) # ax.plot(x,x * 2) # ax.legend([”Demo“],loc=0) plt.show()
2. 雙y軸曲線
雙y軸曲線圖例合併是一個棘手的操作,現以MNIST案例中loss/accuracy繪製曲線。
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time import matplotlib.pyplot as plt import numpy as np x_data = tf.placeholder(tf.float32,[None,784]) y_data = tf.placeholder(tf.float32,10]) x_image = tf.reshape(x_data,[-1,28,1]) # convolve layer 1 filter1 = tf.Variable(tf.truncated_normal([5,5,1,6])) bias1 = tf.Variable(tf.truncated_normal([6])) conv1 = tf.nn.conv2d(x_image,filter1,strides=[1,1],padding='SAME') h_conv1 = tf.nn.sigmoid(conv1 + bias1) maxPool2 = tf.nn.max_pool(h_conv1,ksize=[1,2,padding='SAME') # convolve layer 2 filter2 = tf.Variable(tf.truncated_normal([5,6,16])) bias2 = tf.Variable(tf.truncated_normal([16])) conv2 = tf.nn.conv2d(maxPool2,filter2,padding='SAME') h_conv2 = tf.nn.sigmoid(conv2 + bias2) maxPool3 = tf.nn.max_pool(h_conv2,padding='SAME') # convolve layer 3 filter3 = tf.Variable(tf.truncated_normal([5,16,120])) bias3 = tf.Variable(tf.truncated_normal([120])) conv3 = tf.nn.conv2d(maxPool3,filter3,padding='SAME') h_conv3 = tf.nn.sigmoid(conv3 + bias3) # full connection layer 1 W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120,80])) b_fc1 = tf.Variable(tf.truncated_normal([80])) h_pool2_flat = tf.reshape(h_conv3,7 * 7 * 120]) h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat,W_fc1) + b_fc1) # full connection layer 2 W_fc2 = tf.Variable(tf.truncated_normal([80,10])) b_fc2 = tf.Variable(tf.truncated_normal([10])) y_model = tf.nn.softmax(tf.matmul(h_fc1,W_fc2) + b_fc2) cross_entropy = - tf.reduce_sum(y_data * tf.log(y_model)) train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) sess = tf.InteractiveSession() correct_prediction = tf.equal(tf.argmax(y_data,1),tf.argmax(y_model,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float")) sess.run(tf.global_variables_initializer()) mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) fig_loss = np.zeros([1000]) fig_accuracy = np.zeros([1000]) start_time = time.time() for i in range(1000): batch_xs,batch_ys = mnist.train.next_batch(200) if i % 100 == 0: train_accuracy = sess.run(accuracy,feed_dict={x_data: batch_xs,y_data: batch_ys}) print("step %d,train accuracy %g" % (i,train_accuracy)) end_time = time.time() print("time:",(end_time - start_time)) start_time = end_time print("********************************") train_step.run(feed_dict={x_data: batch_xs,y_data: batch_ys}) fig_loss[i] = sess.run(cross_entropy,y_data: batch_ys}) fig_accuracy[i] = sess.run(accuracy,y_data: batch_ys}) print("test accuracy %g" % sess.run(accuracy,feed_dict={x_data: mnist.test.images,y_data: mnist.test.labels})) # 繪製曲線 fig,ax1 = plt.subplots() ax2 = ax1.twinx() lns1 = ax1.plot(np.arange(1000),fig_loss,label="Loss") # 按一定間隔顯示實現方法 # ax2.plot(200 * np.arange(len(fig_accuracy)),fig_accuracy,'r') lns2 = ax2.plot(np.arange(1000),'r',label="Accuracy") ax1.set_xlabel('iteration') ax1.set_ylabel('training loss') ax2.set_ylabel('training accuracy') # 合併圖例 lns = lns1 + lns2 labels = ["Loss","Accuracy"] # labels = [l.get_label() for l in lns] plt.legend(lns,labels,loc=7) plt.show()
注:資料集儲存在MNIST_data資料夾下
其實就是三步:
1)分別定義loss/accuracy一維陣列
fig_loss = np.zeros([1000]) fig_accuracy = np.zeros([1000]) # 按間隔定義方式:fig_accuracy = np.zeros(int(np.ceil(iteration / interval)))
2)填充真實資料
fig_loss[i] = sess.run(cross_entropy,y_data: batch_ys}) fig_accuracy[i] = sess.run(accuracy,y_data: batch_ys})
3)繪製曲線
fig,loc=7)
以上這篇TensorFlow繪製loss/accuracy曲線的例項就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支援我們。