1. 程式人生 > 實用技巧 >題解 CF620E 【New Year Tree】

題解 CF620E 【New Year Tree】

有關dfs序的例題,需要有一定的位運算基礎

題面

  • 給定一個樹,樹上有顏色,將某一子樹的顏色統一修改,求子樹中顏色的數量

Solution

  • 子樹修改,子樹求和,dfs序的知識(類似區間修改區間求和)
  • 考慮到顏色的個數問題,利用位運算進行表示。
  • 最後答案用二進位制表示,\(\ 1\)表示有該種顏色,\(\ 0\)表示沒有,
  • 因此還需考慮答案\(\ 1\)的數量。
  • dfs序問題自然用到線段樹進行維護。

具體介紹一下位運算,和一些小錯誤

  • 方案總數不是兩個節點維護的方案數的簡單相加,而是“|”(或)
  • 答案維護的是顏色的個數,但不是具體數值
  • 關於答案\(\ 1\)的個數,可以利用快速冪
  • 也可利用\(\ lowbit\)
    ,作用是得到最後\(\ 1\)的位置上表示的數。
  • 建樹的時候特別記住需要\(\ long \ long\)的地方
    更加詳細的內容

Code

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <vector>
#define clr(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int manx=1e6+10;
const int mamx = 1e7 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
  char c = getchar(); int x = 0, f = 1;
  for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
  for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
  return x * f;
}
struct nodee{
	int l,r;
	ll sum;
	ll add;
}e[manx<<2+2];
int clr[manx<<1];
struct node{
    int u;
    int v;
    int nxt;
    int w;
}ee[manx];
int head[manx],js,l[manx],r[manx],cnt,n,m,dfn[manx];
int add(int u,int v){
    ee[++cnt].u = u;
    ee[cnt].nxt = head[u];
    ee[cnt].v = v;
    //e[cnt].w = w;
    head[u] = cnt;
}
inline void init(){
    cnt=js=0;
    clr(head,-1);
}
//大法師 
void dfs(int u, int pre){ 
    js++;
    l[u] = js;
    dfn[js] = u;    
    for(int i = head[u];~i;i = ee[i].nxt){
        int v = ee[i].v;
        if( v == pre ) continue;
        dfs(v,u);
    }
    r[u] = js; //我們可以只記錄他的入段,尾端那個不必重複 
	return ; 
}
//線段樹 
void uploat(int s){//上傳 
	e[s].sum = 0;
	if(e[s<<1].l) e[s].sum |=e[s<<1].sum ;
	if(e[s<<1|1].l ) e[s].sum |=e[s<<1|1].sum ;
}
void downloat(int i){
	if(e[i].add !=0){
		ll s = e[i].add ;//不要用int 用ll,作者就在這卡了一天 
		e[i<<1].sum = s;
		e[i<<1].add = s;
		e[i<<1|1].add = s;	
		e[i<<1|1].sum = s;
	 e[i].add = 0; 
	}
}
void build_up (int rt,int l,int r){
	e[rt].l = l;e[rt].r = r;
	if(l == r){
		e[rt].sum = (ll)1<<(clr[dfn[l]]);
		e[rt].add = 0;
		return;
	}
	int mid = (l+r) >> 1;
	build_up(rt<<1,l,mid);
	build_up(rt<<1|1,mid+1,r);
	e[rt].sum = e[rt<<1].sum | e[rt<<1|1].sum;
}
void updata(int i,int l,int r,int add){
	if(e[i].l >= l && e[i].r <= r)
	{
		e[i].sum = (ll)1<<add;
		e[i].add = (ll)1<<add;
		return;
	}
	int mid = (e[i].l  + e[i].r ) >> 1;
	downloat(i);
	if(mid >= r)updata(i<<1,l,r,add);
	else if(mid <l)updata(i<<1|1,l,r,add);
	else updata(i<<1,l,mid,add),updata(i<<1|1,mid+1,r,add);
	uploat(i);
 }
ll query(int i,int l,int r)
{
   if(e[i].l >= l && e[i].r <= r){
   	   return e[i].sum ;
   }
   downloat(i);
   int mid = (e[i].l +e[i].r ) >> 1;
	if(mid >= r)  
		return  query(i<<1,l,r);
	else 
		if(mid<l)
		return  query(i<<1|1,l,r);//熟悉的操作 
		return  query(i<<1,l,mid)|query(i<<1|1,mid+1,r);
}
ll lowbit(ll x){
	return x&-x;//lowbit函式 
}
int  ans;
int main(){
    n = read();
    m = read();
	init ();
    for(int i = 1;i <= n;i ++)
    	clr[i] = read();
    for(int i = 1;i <= n - 1;i ++)
    {
    	int x = read(),y = read();
    	add(x,y);add(y,x);
	} 
	dfs(1,0);
	build_up(1,1,n);//建樹 
	for(int i = 1;i <= m; i++)
	{
		int x = read();
		int y;
		int z;
		if(x == 1){
			y = read();z = read();
		  updata(1,l[y],r[y],z);	
		}
		else{
			ans = 0;y = read();
			ll diet = query(1,l[y],r[y]);
			while(diet>0){
				diet-=lowbit(diet);
				ans++;//判斷1的個數 
			}
			cout<<ans<<endl;//華麗收場 
		}
	}
	return 0;
}