1. 程式人生 > 資料庫 >PostgreSQL利用遞迴優化求稀疏列唯一值的方法

PostgreSQL利用遞迴優化求稀疏列唯一值的方法

在資料庫中經常會碰到一些表的列是稀疏列,只有很少的值,例如性別欄位,一般就只有2種不同的值。
但是當我們求這些稀疏列的唯一值時,如果表的資料量很大,速度還是會很慢。

例如:
建立測試表

bill=# create table t_sex (sex char(1),otherinfo text);
CREATE TABLE
bill=# insert into t_sex select 'm',generate_series(1,10000000)||'this is test';
INSERT 0 10000000
bill=# insert into t_sex select 'w',10000000)||'this is test';
INSERT 0 10000000

查詢:
可以看到下面的查詢速度很慢。

bill=# select count(distinct sex) from t_sex;
 count
-------
   2
(1 row)

Time: 8803.505 ms (00:08.804)
bill=# select sex from t_sex t group by sex;
 sex
-----
 m
 w
(2 rows)

Time: 1026.464 ms (00:01.026)

那麼我們對該欄位加上索引又是什麼情況呢?

速度依然沒有明顯

bill=# create index idx_sex_1 on t_sex(sex);
CREATE INDEX
bill=# select count(distinct sex) from t_sex;
 count
-------
   2
(1 row)

Time: 8502.460 ms (00:08.502)
bill=# select sex from t_sex t group by sex;
 sex
-----
 m
 w
(2 rows)

Time: 572.353 ms

的變化,可以看到執行計劃已經使用Index Only Scan了。

bill=# explain select count(distinct sex) from t_sex;
                     QUERY PLAN
----------------------------------------------------------------------------------------------
 Aggregate (cost=371996.44..371996.45 rows=1 width=8)
  -> Index Only Scan using idx_sex_1 on t_sex (cost=0.44..321996.44 rows=20000000 width=2)
(2 rows)

同樣的SQL我們看看在Oracle中效能如何?

建立測試表:

SQL> create table t_sex (sex char(1),otherinfo varchar2(100));

Table created.

SQL> insert into t_sex select 'm',rownum||'this is test' from dual connect by level <=10000000;

10000000 rows created.

SQL> commit;

Commit complete.

SQL> insert into t_sex select 'w',rownum||'this is test' from dual connect by level <=10000000;

10000000 rows created.

SQL> commit;

Commit complete.

效能測試:

SQL> set lines 1000 pages 2000
SQL> set autotrace on
SQL> set timing on

SQL> select count(distinct sex) from t_sex;

COUNT(DISTINCTSEX)
------------------
         2

Elapsed: 00:00:01.58

Execution Plan
----------------------------------------------------------
Plan hash value: 3915432945

----------------------------------------------------------------------------
| Id | Operation     | Name | Rows | Bytes | Cost (%CPU)| Time   |
----------------------------------------------------------------------------
|  0 | SELECT STATEMENT  |    |   1 |   3 | 20132  (1)| 00:00:01 |
|  1 | SORT GROUP BY   |    |   1 |   3 |      |     |
|  2 |  TABLE ACCESS FULL| T_SEX |  14M|  42M| 20132  (1)| 00:00:01 |
----------------------------------------------------------------------------

Note
-----
  - dynamic statistics used: dynamic sampling (level=2)


Statistics
----------------------------------------------------------
     0 recursive calls
     0 db block gets
   74074 consistent gets
     0 physical reads
     0 redo size
    552 bytes sent via SQL*Net to client
    608 bytes received via SQL*Net from client
     2 SQL*Net roundtrips to/from client
     1 sorts (memory)
     0 sorts (disk)
     1 rows processed

SQL> select sex from t_sex t group by sex;

SE
--
m
w

Elapsed: 00:00:01.08

Execution Plan
----------------------------------------------------------
Plan hash value: 3915432945

----------------------------------------------------------------------------
| Id | Operation     | Name | Rows | Bytes | Cost (%CPU)| Time   |
----------------------------------------------------------------------------
|  0 | SELECT STATEMENT  |    |  14M|  42M| 20558  (3)| 00:00:01 |
|  1 | SORT GROUP BY   |    |  14M|  42M| 20558  (3)| 00:00:01 |
|  2 |  TABLE ACCESS FULL| T_SEX |  14M|  42M| 20132  (1)| 00:00:01 |
----------------------------------------------------------------------------

Note
-----
  - dynamic statistics used: dynamic sampling (level=2)


Statistics
----------------------------------------------------------
     0 recursive calls
     0 db block gets
   74074 consistent gets
     0 physical reads
     0 redo size
    589 bytes sent via SQL*Net to client
    608 bytes received via SQL*Net from client
     2 SQL*Net roundtrips to/from client
     1 sorts (memory)
     0 sorts (disk)
     2 rows processed

可以看到Oracle的效能即使不加索引也明顯比PostgreSQL中要好。
那麼我們在PostgreSQL中是不是沒辦法繼續優化了呢?這種情況我們利用pg中的遞迴語句結合索引可以大幅提升效能。

SQL改寫:

bill=# with recursive tmp as (
bill(#  (
bill(#   select min(t.sex) as sex from t_sex t where t.sex is not null
bill(#  )
bill(#  union all
bill(#  (
bill(#   select (select min(t.sex) from t_sex t where t.sex > s.sex and t.sex is not null)
bill(#    from tmp s where s.sex is not null
bill(#  )
bill(# )
bill-# select count(distinct sex) from tmp;
 count
-------
   2
(1 row)

Time: 2.711 ms

檢視執行計劃:

bill=# explain with recursive tmp as (
bill(#  (
bill(#   select min(t.sex) as sex from t_sex t where t.sex is not null
bill(#  )
bill(#  union all
bill(#  (
bill(#   select (select min(t.sex) from t_sex t where t.sex > s.sex and t.sex is not null)
bill(#    from tmp s where s.sex is not null
bill(#  )
bill(# )
bill-# select count(distinct sex) from tmp;
                           QUERY PLAN
----------------------------------------------------------------------------------------------------------------------
 Aggregate (cost=53.62..53.63 rows=1 width=8)
  CTE tmp
   -> Recursive Union (cost=0.46..51.35 rows=101 width=32)
      -> Result (cost=0.46..0.47 rows=1 width=32)
         InitPlan 3 (returns $1)
          -> Limit (cost=0.44..0.46 rows=1 width=2)
             -> Index Only Scan using idx_sex_1 on t_sex t (cost=0.44..371996.44 rows=20000000 width=2)
                Index Cond: (sex IS NOT NULL)
      -> WorkTable Scan on tmp s (cost=0.00..4.89 rows=10 width=32)
         Filter: (sex IS NOT NULL)
  -> CTE Scan on tmp (cost=0.00..2.02 rows=101 width=32)
(11 rows)

Time: 1.371 ms

可以看到執行時間從原先的8000ms降低到了2ms,提升了幾千倍!

甚至對比Oracle,效能也是提升了很多。

但是需要注意的是:這種寫法僅僅是針對稀疏列,換成資料分佈廣泛的欄位,顯然效能是下降的,所以使用遞迴SQL不適合資料分佈廣泛的欄位的group by或者count(distinct)操作。

到此這篇關於PostgreSQL利用遞迴優化求稀疏列唯一值的文章就介紹到這了,更多相關PostgreSQL遞迴優化內容請搜尋我們以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援我們!