1. 程式人生 > 其它 >Prime Ring Problem

Prime Ring Problem

A ring is compose of n circles as shown in diagram. Put natural number 1, 2, …, n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.
在這裡插入圖片描述
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4

Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
思路:
dfs演算法
程式碼:

#include<iostream>
#include<cstdio>
#include
<cstring>
#include<cmath> using namespace std; int cir[21]; int book[21]={0}; int prime(int num){ int f=1; for(int i=2;i<=sqrt(num);i++){ if(num%i==0){ f=0; break; } } return f; }//判別素數 void dfs(int n,int s){ int f=0; if(s==n+1
&&prime(cir[s-1]+cir[1])==1){ for(int i=1;i<n;i++){ cout<<cir[i]<<" "; } cout<<cir[n]<<endl; return; } for(int i=2;i<=n;i++){ f=prime(cir[s-1]+i); if(book[i]==0&&f==1){ book[i]=1; cir[s]=i; dfs(n,s+1); book[i]=0; } } } int main(void){ int n,s=0; while(~scanf("%d",&n)){ s++; memset(cir,0,sizeof(cir)); cir[1]=1; if(n==1){ printf("Case %d:\n",s); cout<<n<<endl; cout<<endl; } else{ printf("Case %d:\n",s); dfs(n,2); cout<<endl; } } return 0; }