1. 程式人生 > 其它 >二項式反演入門

二項式反演入門

對於序列 \(\{f_n\}\)\(\{g_n\}\),通過 \(f\) 計算出 \(g\) 叫做正演,通過 \(g\) 計算出 \(f\) 叫做反演。

形式

二項式反演講的是:

\[g_n=\sum_{i=0}^n\binom{n}{i}f_i \Leftrightarrow f_n=\sum_{i=0}^n(-1)^{n-i}\binom{n}{i}g_i \]

證明

將組合數展開得到:

\[\begin{aligned} &g_n=\sum_{i=0}^n\binom{n}{i}f_i \\ &\Leftrightarrow g_n=\sum_{i=0}^n \frac{n!}{i!(n-i)!}f_i \\ &\Leftrightarrow \frac{g_n}{n!} = \sum_{i=0}^n \frac{1}{(n-i)!}\frac{f_i}{i!} \end{aligned} \]

考慮序列 \(\{f_n\}\)

\(\{g_n\}\) 的指數生成函式 \(F(x),G(x)\)。上式是一個卷積的形式,寫成指數生成函式就是 \(G(x)=e^xF(x) \Rightarrow F(x)=\frac{1}{e^x}G(x)\)

\(e^{-x}\)\(x=0\) 處泰勒展開得到 \(e^{-x} = \sum_{i=0}^n (-1)^i \dfrac{x^i}{i!}\),和 \(G(x)\) 捲起來得到

\[\begin{aligned} &F(x)=\sum_{k=0}^n\sum_{i=0}^k(-1)^{k-i}\frac{1}{(k-i)!}\frac{g_i}{i!}x^k \\ &\Rightarrow \frac{f_n}{n!}=\sum_{i=0}^n(-1)^{n-i}\frac{1}{(n-i)!}\frac{g_i}{i!} \\ &\Rightarrow f_n=\sum_{i=0}^n(-1)^{n-i} \frac{n!}{i!(n-i)!}g_i=\sum_{i=0}^n(-1)^{n-i} \binom{n}{i} g_i \end{aligned} \]

證畢。

應用