1. 程式人生 > 其它 >「 學習筆記 」二項式定理與組合恆等式

「 學習筆記 」二項式定理與組合恆等式

「 學習筆記 」二項式定理與組合恆等式

二項式定理與組合恆等式

前置知識

\[\dbinom {n} {k} = \mathrm{C} _ n ^ k = \dfrac {n!} {(n - k)! \times k!} \]

二項式定理

二項式定理:設 \(n\) 是正整數,對於一切 \(x\)\(y\)

\[{(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \]

常用形式

\[{(x + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k \]

等價形式

\[\begin{aligned} {(x + y)} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {n - k} x ^ k y ^{n - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {n - k} x ^ {n - k} y ^k \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ {n - k} y ^k \\ \end{aligned} \]

證明 1 ( 組合意義 / 組合分析 / 算二次 )

\[{(x + y)} ^ n = (x + y) \times (x + y) \times \cdots \times (x + y) \]

對於每一項 \(x ^ k y ^ {n - k}\),其含義就是在 \(n\)\((x + y)\) 中選擇 \(k\)\(x\)\(n - k\)\(y\),故有 \(\dbinom {n} {k}\) 中選法,即有 \(\dbinom {n} {k}\)\(x ^ k y ^ {n - k}\)

證畢

證明 2 ( 數學歸納法 )

\(n = 1\) 時,公式顯然成立
假設公式對於正整數 \(n\) 成立,即證明公式對於 \(n + 1\)

也成立
即證

\[{(x + y)} ^ {n + 1} = \sum \limits _ {k = 0} ^ {n + 1} \dbinom {n} {k} x ^ k y ^ {n + 1 - k} \]
  • 因為公式對於 \(n\) 成立,故有
\[\begin{aligned} {(x + y)} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ {(x + y)} ^ {n + 1} & = (x + y) \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ & = x \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} + y \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ {k + 1} y ^{n - k} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ {k + 1} y ^{(n + 1) - (k + 1)} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k + 1 = 1} ^ {n + 1} \dbinom {n} {(k + 1) - 1} x ^ {k + 1} y ^{(n + 1) - (k + 1)} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k = 1} ^ {n + 1} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} \\ & = \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + x ^ {n + 1} + \sum \limits _ {k = 1} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} + y ^ {n + 1} \\ & = \dbinom {n + 1} {0} x ^ {n + 1} + \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + \sum \limits _ {k = 1} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} + \dbinom {n + 1} {n + 1} y ^ {n + 1} \\ \end{aligned} \]

\(\mathrm{Pascal}\)

公式 \(\dbinom {n + 1} {k} = \dbinom {n} {k - 1} + \dbinom {n} {k}\)(後面會證明),就可以把 \(k\) 相等的項合併了

\[\begin{aligned} {(x + y)} ^ {n + 1} & = \dbinom {n + 1} {0} x ^ {n + 1} + \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k - 1} x ^ k y ^{n + 1 - k} + \sum \limits _ {k = 1} ^ n \dbinom {n} {k} x ^ k y ^{n + 1 - k} + \dbinom {n + 1} {n + 1} y ^ {n + 1} \\ & = \dbinom {n + 1} {0} x ^ {n + 1} y ^ 0 + \sum \limits _ {k = 1} ^ {n} \dbinom {n + 1} {k} x ^ k y ^{n + 1 - k} + \dbinom {n + 1} {n + 1} x ^ 0 y ^ {n + 1} \\ & = \sum \limits _ {k = 0} ^ {n + 1} \dbinom {n + 1} {k} x ^ k y ^{n + 1 - k} \\ \end{aligned} \]

證畢

組合恆等式

公式 1

\[\dbinom {n} {k} = \dbinom {n} {n - k} \]

證明 ( 組合意義 )

\(n\) 個小球選擇 \(k\) 個留下,等價於選擇 \(n - k\) 個不留下

證畢

公式 2

\[\dbinom {n} {k} = \dfrac {n} {k} \dbinom {n - 1} {k - 1} \]

證明 ( 公式法 )

\[\begin{aligned} \dbinom {n} {k} & = \dfrac {n!} {(n - k)! \times k!} \\ & = \dfrac {n} {k} \times \dfrac {(n - 1)!} {(n - k)! \times k!} \\ & = \dfrac {n} {k} \times \dfrac {(n - 1)!} {[(n - 1) - (k - 1)]! \times k!} \\ & = \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ \end{aligned} \]

證畢

公式 3 ( Pascal 公式 )

\[\dbinom {n} {k} = \dbinom {n - 1} {k} + \dbinom {n - 1} {k - 1} \]

證明 ( 組合意義 )

\(n\) 個小球中選擇 \(k\) 個,等價於 ( 不選最後一個,前 \(n - 1\) 箇中選擇 \(k\) 個 ) 和 ( 選最後一個,前 \(n - 1\) 箇中選擇 \(k - 1\) 個 ) 的並集

公式 4

\[\sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} = 2 ^ n \]

證明 ( 公式法 )

由二項式定理得 \({(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k}\),令 \(x = y = 1\),則等式變為

\[\begin{aligned} {(1 + 1)} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} \times 1 ^ k \times 1 ^{n - k} \\ 2 ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} \\ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} & = 2 ^ n \\ \end{aligned} \]

證畢

公式 5

\[\sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} = 0 \]

證明 ( 公式法 )

由二項式定理得 \({(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k}\),令 \(x = -1\)\(y = 1\),則等式變為

\[\begin{aligned} {[(-1) + 1]} ^ n & = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} \times {(-1)} ^ k \times 1 ^{n - k} \\ 0 ^ n & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \dbinom {n} {k} \\ \sum \limits _ {k = 0} ^ n {(-1)} ^ k \dbinom {n} {k} & = 0 \\ \end{aligned} \]

證畢

公式 6 ( 變下項求和 )

\[\sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} = n 2 ^ {n - 1} \]

證明 1 ( 組合意義 )

  • 公式含義:選擇 \(n\) 個小球的所有選法中每個小球出現的次數和
  • 右式含義:\(n\) 個小球,每個小球被選擇的次數是 \(2 ^ {n - 1}\)
  • 左式含義:對於所有選法中選擇 \(k\) 個小球情況,其對答案的貢獻是 \(k\),共有 \(\dbinom {n} {k}\) 種選法

顯然,三種含義等價

證畢

證明 2 ( 公式法 )

公式 2 \(\dbinom {n} {k} = \dfrac {n} {k} \dbinom {n - 1} {k - 1}\) 得:

\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} & = 0 \dbinom {n} {k} + \sum \limits _ {k = 1} ^ {n} k \times \dbinom {n} {k} \\ & = 0 + \sum \limits _ {k = 1} ^ {n} k \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ & = \sum \limits _ {k = 1} ^ {n} n \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 1} ^ {n} \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ \end{aligned} \]

公式 4 \(\sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} = 2 ^ n\)\(\sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} = 2 ^ {n - 1}\),故

\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} & = n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ & = n 2 ^ {n - 1} \\ \end{aligned} \]

證畢

公式 7

\[\sum \limits _ {k = 0} ^ {n} k ^ 2 \dbinom {n} {k} = n (n + 1) 2 ^ {n - 2} \]

證明 1 ( 組合意義 )

\[\begin {aligned} n (n + 1) 2 ^ {n - 2} & = n (n - 1) 2 ^ {n - 2} + n \times 2 \times 2 ^ {n - 2} \\ & = n (n - 1) 2 ^ {n - 2} + n \times 2 ^ {n - 1} \end {aligned} \]
  • 左式含義:有 \(n\) 個不同的數,對於選擇 \(k\) 個不同的數的情況,可以組成 \(k ^ 2\) 種有序數對,每種有序數對 \((a, b)\) 對答案的貢獻為 \(1\),一起對答案的貢獻就是 \(k ^ 2\),選擇 \(k\) 個不同的數有 \(\dbinom {n} {k}\) 種選法
  • 右式含義:考慮每種有序數對 \((a, b)\) 對答案的貢獻;若 \(a \neq b\),對於其它 \(n - 2\) 個數的每種選法中,有 \(1\) 的貢獻,有 \(2 ^ {n - 2}\) 種選法;若 \(a = b\),對於其它 \(n - 2\) 個數的每種選法中,有 \(1\) 的貢獻,有 \(2 ^ {n - 1}\) 種選法

右式含義中的兩種情況的並集等於左式含義中的情況,故兩種含義等價

證畢

證明 2 ( 公式法 )

公式 2 \(\dbinom {n} {k} = \dfrac {n} {k} \dbinom {n - 1} {k - 1}\) 得:

\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k ^ 2 \dbinom {n} {k} & = 0 + \sum \limits _ {k = 1} ^ {n} k ^ 2 \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ & = \sum \limits _ {k = 1} ^ {n} k ^ 2 \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \\ & = \sum \limits _ {k = 1} ^ {n} k \times n \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 1} ^ {n} k \dbinom {n - 1} {k - 1} \\ & = n \sum \limits _ {k = 0} ^ {n - 1} (k + 1) \dbinom {n - 1} {k} \\ & = n \sum \limits _ {k = 0} ^ {n - 1} k \dbinom {n - 1} {k} + n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ \end{aligned} \]

公式 6 \(\sum \limits _ {k = 0} ^ {n} k \dbinom {n} {k} = n 2 ^ {n - 1}\) 得:\(\sum \limits _ {k = 0} ^ {n - 1} k \dbinom {n - 1} {k} = (n - 1) 2 ^ {n - 2}\)
公式 4 \(\sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} = 2 ^ n\) 得:\(\sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} = 2 ^ {n - 1}\)

故原式可化為:

\[\begin {aligned} \sum \limits _ {k = 0} ^ {n} k ^ 2 \dbinom {n} {k} & = n \sum \limits _ {k = 0} ^ {n - 1} k \dbinom {n - 1} {k} + n \sum \limits _ {k = 0} ^ {n - 1} \dbinom {n - 1} {k} \\ & = n (n - 1) 2 ^ {n - 2} + n 2 ^ {n - 1} \\ & = n (n - 1) 2 ^ {n - 2} + n \times 2 \times 2 ^ {n - 2} \\ & = n (n + 1) 2 ^ {n - 2} \\ \end{aligned} \]

證畢

公式 8 ( 變上項求和 )

\[\sum \limits _ {l = 0} ^ n \dbinom {l} {k} = \dbinom {n + 1} {k + 1} n, k \in N \]

證明 ( 組合意義 )

\(n + 1\) 個小球中選擇 \(k + 1\)
對於所有選法中,考慮選擇的最後一個小球的位置為 \(l + 1(0 \leq l \leq n)\) 時對答案的貢獻,就是在前 \(l\) 個小球中選擇 \(k\) 的方案數
因此,對於所有的 \(l\) 屬於的集合的並集,就等於在 \(n + 1\) 個小球中選擇 \(k + 1\) 個的集合

證畢

公式 9

\[\dbinom {n} {r} \dbinom {r} {k} = \dbinom {n} {k} \dbinom {n - k} {r - k} \]

證明 ( 組合意義 )

\(n\) 個球分成 \(3\) 堆,使得第 \(1\) 堆有 \(k\) 個球、第 \(2\) 堆有 \(r - k\) 個球、第 \(3\) 堆有 \(n - r\) 個球 的方案數

  • 左式含義:先從這 \(n\) 個球中選出 \(r\) 個球,把剩下的 \(n - r\) 個分到第 \(3\) 堆;再從這 \(r\) 箇中選擇 \(k\) 個分到第 \(1\) 堆,剩下的 \(r - k\) 給分到第 \(2\)
  • 右式含義:先從這 \(n\) 個球中選出 \(k\) 個球分到第 \(1\) 堆;再從剩下的 \(n - k\) 箇中選擇 \(r - k\) 個分到第 \(2\) 堆,剩下的 \(n - r\) 給分到第 \(3\)

顯然,兩種含義不會重複,並且兩種含義等價

證畢

公式 10

\[\sum \limits _ {k = 0} ^ {r} \dbinom {m} {k} \dbinom {n} {r - k} = \dbinom {m + n} {r} \]

證明 ( 組合意義 )

  • 右式含義:從 \(m + n\) 個球中選出 \(r\) 個球
  • 左式含義:從前 \(m\) 個球中選出 \(k\) 個球和從後 \(n\) 個球中選出 \(r - k\) 個球的並集的並集(第一個並集對於每個 \(k\) 的方案數,第二個並集對於 \(\sum\)

顯然,兩種含義等價

證畢

公式 11

\[\sum \limits _ {k = 0} ^ {m} \dbinom {m} {k} \dbinom {n} {k} = \dbinom {m + n} {m} \]

證明 ( 公式法 )

\[\begin{aligned} \sum \limits _ {k = 0} ^ {m} \dbinom {m} {k} \dbinom {n} {k} & = \sum \limits _ {k = 0} ^ {m} \dbinom {m} {m - k} \dbinom {n} {k} \\ \end{aligned} \]

公式 10 \(\sum \limits _ {k = 0} ^ {r} \dbinom {m} {k} \dbinom {n} {r - k} = \dbinom {m + n} {r}\)\(\sum \limits _ {k = 0} ^ {r} \dbinom {m} {r - k} \dbinom {n} {k} = \dbinom {n + m} {r}\),令 \(r = m\) 得:\(\sum \limits _ {k = 0} ^ {m} \dbinom {m} {m - k} \dbinom {n} {k} = \dbinom {m + n} {m}\),故

\[\begin{aligned} \sum \limits _ {k = 0} ^ {m} \dbinom {m} {k} \dbinom {n} {k} & = \sum \limits _ {k = 0} ^ {m} \dbinom {m} {m - k} \dbinom {n} {k} \\ & = \dbinom {m + n} {m} \\ \end{aligned} \]

證畢

課後習題

習題 1

\({(3x - 2y)} ^ {18}\) 的展開式中,\(x ^ 5 y ^ {13}\) 的係數是多少?\(x ^ 8 y ^ 9\) 的係數是多少?

答案

解:
\(x ^ 5 y ^ {13}\) 的係數為 \(\dbinom {18} {5} (3 ^ 5 + 2 ^ {13})\)\(x ^ 8 y ^ 9\) 的係數為 \(0\)

習題 2

  1. 用二項式定理證明:\(3 ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} 2 ^ k\)
  2. 對於任意實數 \(r\) 求 $ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} r ^ k$

答案

  1. 證:
    二項式定理常用形式 得:\({(x + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k\)
    \(x = 2\),則等式變為 \({(2 + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} 2 ^ k\),即 \(3 ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} 2 ^ k\)
    證畢

  2. 解:
    二項式定理常用形式 得:$ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} r ^ k = {(r + 1)} ^ n$

習題 3

二項式定理 證明:\(2 ^ n = \sum \limits _ {k = 0} ^ {n} {(- 1)} ^ k \dbinom {n} {k} 3 ^ {n - k}\)

答案

證:
二項式定理 得:\({(x + y)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k y ^{n - k}\)
\(x = -1, y = 3\),則等式變為 \({[(-1) + 3]} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-1)} ^ k 3 ^{n - k}\)
\(2 ^ n = \sum \limits _ {k = 0} ^ {n} {(- 1)} ^ k \dbinom {n} {k} 3 ^ {n - k}\)
證畢

習題 4

求 $ \sum \limits _ {k = 1} ^ n {(-1)} ^ k \dbinom {n} {k} {10} ^ k$

答案

解:
$ \sum \limits _ {k = 0} ^ n {(-1)} ^ k \dbinom {n} {k} {10} ^ k = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-10)} ^ k$
二項式定理常用形式 得:\({(x + 1)} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} x ^ k\)
\(x = -10\),則等式變為 \({[(-10) + 1]} ^ n = \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-10)} ^ k\)
故 $ \sum \limits _ {k = 0} ^ n \dbinom {n} {k} {(-10)} ^ k = {(-9)} ^ n$

習題 5

用組合意義證明 \(\dbinom {n} {k} - \dbinom {n - 3} {k} = \dbinom {n - 1} {k - 1} + \dbinom {n - 2} {k - 1} + \dbinom {n - 3} {k - 1}\)

答案

證:
選擇 \(n\) 個小球中的 \(k\)

  • 左式含義:( 總方案數 ) \(-\) ( 前 \(3\) 個小球都不選的方案數 ),即表示至少選擇前 \(3\) 個小球中的一個的方案數
  • 右式含義:( 選擇第 \(1\) 個小球的方案數 ) \(+\) ( 不選擇第 \(1\) 個小球,選擇第 \(2\) 個小球的方案數 ) \(+\) ( 不選擇第 \(1\) 個小球和第 \(2\) 個小球,選擇第 \(3\) 個小球的方案數 )

顯然,這兩個含義是等價的
證畢

習題 6

\(n\) 是正整數,請證明:

\[ \sum \limits _ {k = 0} ^ n {(-1)} ^ k {\dbinom {n} {k}} ^ 2 = \begin{cases} 0, n = 2m + 1, m \in N_+ \\ {(-1)} ^ m \dbinom {2m} {m}, n = 2m, m \in N_+ \\ \end{cases} \]

答案

證:
如果 \(n\) 是奇數,則 \(k\)\(n - k\) 是不同奇偶的
\(\therefore\) \({(-1)} ^ k\)\({(-1)} ^ {n - k}\) 是一正一負的

\[\begin{aligned} \sum \limits _ {k = 0} ^ n {(-1)} ^ k {\dbinom {n} {k}} ^ 2 & = \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} {k} + \sum \limits _ {k = m + 1} ^ {n} {(-1)} ^ k \dbinom {n} {k} \\ & = \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} {k} - \sum \limits _ {k = m + 1} ^ {n} {(-1)} ^ {n - k} \dbinom {n} {n - k} \\ & = \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} {k} - \sum \limits _ {k = 0} ^ {m} {(-1)} ^ k \dbinom {n} k \\ & = 0 \\ \end{aligned} \]

如果 \(n\) 是偶數,則 \(k\)\(n - k\) 是同奇偶的
\(\therefore\) \({(-1)} ^ k = {(-1)} ^ {n - k}\)

二項式定理 得:

\[\begin{aligned} {(x + 1)} ^ n & = \sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} x ^ k \\ {(x - 1)} ^ n & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ {n - k} \dbinom {n} {k} x ^ k \\ & =\sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ k \\ {(x ^ 2 - 1)} ^ n & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ {n - k} \dbinom {n} {k} {(x ^ 2)} ^ k \\ & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} {(x ^ 2)} ^ k \\ & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ {2k} \\ \end{aligned} \]

故可列等式 \({(x + 1)} ^ n {(x - 1)} ^ n = {(x ^ 2 - 1) ^ n}\)

\[\begin{aligned} {(x + 1)} ^ n {(x - 1)} ^ n & = {(x ^ 2 - 1) ^ n} \\ \sum \limits _ {k = 0} ^ {n} \dbinom {n} {k} x ^ k \times \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ k & = \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ {2k} \\ \end{aligned} \]

\(\because\) 左右兩邊多項式相等
\(\therefore \forall i\)\(x ^ i\) 的係數相等
\(i = n = 2m\),即考慮 \(x ^ n\) 的係數

\[\begin{aligned} \sum \limits _ {k = 0} ^ {n} \dbinom {n} {n - k} x ^ {n - k} \times {(-1)} ^ k \dbinom {n} {k} x ^ k & = {(-1)} ^ m \dbinom {n} {m} x ^ n \\ \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k \dbinom {n} {k} x ^ {n - k} \times \dbinom {n} {k} x ^ k & = {(-1)} ^ m \dbinom {n} {m} x ^ n \\ \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k {\dbinom {n} {k}} ^ 2 x ^ n & = {(-1)} ^ m \dbinom {n} {m} x ^ n \\ \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k {\dbinom {n} {k}} ^ 2 x ^ n & = {(-1)} ^ m \dbinom {2m} {m} x ^ n \\ \end{aligned} \]

同時約去 \(x ^ n\),得

\[\begin{aligned} \sum \limits _ {k = 0} ^ {n} {(-1)} ^ k {\dbinom {n} {k}} ^ 2 & = {(-1)} ^ m \dbinom {2m} {m} \\ \end{aligned} \]

證畢

習題 7

化簡 \(\dbinom {n} {k} + 3 \dbinom {n} {k - 1} + 3 \dbinom {n} {k - 2} + \dbinom {n} {k - 3}\)

答案

證:
$\dbinom {n} {k} + 3 \dbinom {n} {k - 1} + 3 \dbinom {n} {k - 2} + \dbinom {n} {k - 3} = \dbinom {3} {0} \dbinom {n} {k} + \dbinom {3} {1} \dbinom {n} {k - 1} + \dbinom {3} {2} \dbinom {n} {k - 2} + \dbinom {3} {3} \dbinom {n} {k - 3} = $
\(2\) 堆小球,第 \(1\) 堆有 \(3\) 個,第 \(2\) 堆有 \(n\)
\(n + 3\) 個小球中選擇 \(k\) 個,等價於 ( 在第 \(1\) 堆選擇 \(0\) 個,第 \(2\) 堆選擇 \(k\) 個 ) + ( 在第 \(1\) 堆選擇 \(1\) 個,第 \(2\) 堆選擇 \(k - 1\) 個 ) + ( 在第 \(1\) 堆選擇 \(2\) 個,第 \(2\) 堆選擇 \(k - 2\) 個 ) + ( 在第 \(1\) 堆選擇 \(3\) 個,第 \(2\) 堆選擇 \(k - 3\) 個)
證畢

習題 8

證明 \(\dbinom {r} {k} = \dfrac {r} {r - k} \dbinom {r - 1} {k}\),其中 \(r \in R\)\(k \in Z\)\(r \neq k\)

答案

本題需要使用牛頓二項式,不符合本部落格的討論範圍

習題 9

求:\(1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \cdots + {(-1)} ^ n \dfrac {1} {n + 1} \dbinom {n} {n}\)

答案

解:

\[\begin{aligned} 1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \cdots + {(-1)} ^ n \dfrac {1} {n + 1} \dbinom {n} {n} & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {k + 1} \dbinom {n} {k} \\ \end{aligned} \]

公式 2 \(\dbinom {n + 1} {k + 1} = \dfrac {n + 1} {k + 1} \dbinom {n} {k}\) 得:\(\dbinom {n} {k} = \dfrac {k + 1} {n + 1} \dbinom {n + 1} {k + 1}\)

\[\begin{aligned} \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {k + 1} \dbinom {n} {k} & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {k + 1} \times \dfrac {k + 1} {n + 1} \dbinom {n + 1} {k + 1} \\ & = \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dfrac {1} {n + 1} \dbinom {n + 1} {k + 1} \\ & = \dfrac { \sum \limits _ {k = 0} ^ n {(-1)} ^ k \times \dbinom {n + 1} {k + 1}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 0} ^ n {(-1)} ^ {k + 1} \times \dbinom {n + 1} {k + 1}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 1} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 0} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k} - {(-1)} ^ 0 \times \dbinom {n + 1} {0}} {n + 1} \\ & = -\dfrac { \sum \limits _ {k = 0} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k} - 1} {n + 1} \\ \end{aligned} \]

公式 5 $ \sum \limits _ {k = 0} ^ n {(-1)}^k \dbinom {n} {k} = 0$ 得:$ \sum \limits _ {k = 0} ^ {n + 1} {(-1)}^k \dbinom {n + 1} {k} = 0$

\[\begin{aligned} -\dfrac { \sum \limits _ {k = 0} ^ {n + 1} {(-1)} ^ k \times \dbinom {n + 1} {k} - 1} {n + 1} & = - \dfrac {0 - 1} {n + 1} \\ & = - \dfrac {-1} {n + 1} \\ & = \dfrac {1} {n + 1} \\ \end{aligned} \]

\(\therefore 1 - \dfrac {1} {2} \dbinom {n} {1} + \dfrac {1} {3} \dbinom {n} {2} - \dfrac {1} {4} \dbinom {n} {3} + \cdots + {(-1)} ^ n \dfrac {1} {n + 1} \dbinom {n} {n} = \dfrac {1} {n + 1}\)

習題 10

  1. 證明:\(\dbinom {n + 1} {k + 1} = \dbinom {0} {k} + \dbinom {1} {k} + \cdots + \dbinom {n - 1} {k} + \dbinom {n} {k}\)
  2. 證明:\(m ^ 2 = 2 \dbinom {m} {2} + \dbinom {m} {1}\)

答案

  1. 證:
    \(\dbinom {n + 1} {k + 1} = \dbinom {0} {k} + \dbinom {1} {k} + \cdots + \dbinom {n - 1} {k} + \dbinom {n} {k} = \sum \limits _ {i = 0} ^ {n} \dbinom {i} {k}\)
    \(n + 1\) 個小球中選擇 \(k + 1\) 個的方案數,等價於 ( 列舉選擇的最後一個小球的位置,在這個小球前選擇 \(k\) 個小球 ) 的方案數之和
    證畢
  2. 證:
    ( 在 \(m\) 個不同的數中先後選擇 \(2\) 個可以相同的數的方案數,組成一個有序數對 ),等價於 ( 選擇不同的 \(2\) 個數組成 \(2\) 個有序數對 ) 和 ( 選擇 \(1\) 個數組成 \(1\) 個有序數對 ) 的方案數之和
    證畢

習題 11

求整數 \(a, b, c\),使得對於所有的 \(m\),滿足:\(m ^ 3 = a \dbinom {m} {3} + b \dbinom {m} {2} + c \dbinom {m} {1}\)

答案

解:
( 在 \(m\) 個不同的數中先後選擇 \(3\) 個可以相同的數的方案數,組成一個有序數對 ),等價於 ( 選擇不同的 \(3\) 個數組成 \(6\) 個有序數對 )、( 選擇不同的 \(2\) 個數組成 \(6\) 個有序數對 )、( 選擇 \(1\) 個數組成 \(1\) 個有序數對 ) 的方案數之和
\(\therefore m ^ 3 = 6 \times \dbinom {m} {3} + 6 \times \dbinom {m} {2} + 1 \times \dbinom {m} {1}\)
\(\therefore a = 6, b = 6, c = 1\)

習題 12

\(n\) 是整數,請證明 \(\sum \limits _ {k = 1} ^ {n} \dbinom {n} {k} \dbinom {n} {k - 1} = \dfrac {1} {2} \dbinom {2n + 2} {n + 1} - \dbinom {2n} {n}\)

答案

證:

\[\begin {aligned} \sum \limits _ {k = 1} ^ {n} \dbinom {n} {k} \dbinom {n} {k - 1} & = \sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n} {k - 1} \\ \dfrac {1} {2} \dbinom {2n + 2} {n + 1} - \dbinom {2n} {n} & = \dfrac {1} {2} \times \dfrac {2n + 2} {n + 1} \dbinom {2n + 1} {n} - \dbinom {2n} {n} \\ & = \dfrac {1} {2} \times 2 \dbinom {2n + 1} {n} - \dbinom {2n} {n} \\ & = \dbinom {2n + 1} {n} - \dbinom {2n} {n} \\ & = \dbinom {2n} {n - 1} \\ \end{aligned} \]

即證 \(\sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n} {k - 1} = \dbinom {2n} {n - 1}\)

  • 右式含義:在 \(2n\) 個小球中選擇 \(n - 1\) 個的方案數
  • 左式含義:( 在前 \(n\) 個小球中選擇 \(n - k\) 個 ) 和 ( 在後 \(n\) 個小球中選擇 \(k - 1\) 個 ) 的方案數之和;\(\because 1 \leq k \leq n\)\(\therefore n - k, k - 1 \geq 0\),故此含義成立

顯然,左右兩式等價

證畢

習題 13

\(n\) 是整數,請用組合意義證明 \(\sum \limits _ {k = 1} ^ {n} k {\dbinom {n} {k}} ^ 2 = n \dbinom {2n - 1} {n - 1}\)

答案

證:

\[\begin {aligned} \sum \limits _ {k = 1} ^ {n} k {\dbinom {n} {k}} ^ 2 & = \sum \limits _ {k = 1} ^ {n} k \dbinom {n} {k} \dbinom {n} {n - k} \\ & = \sum \limits _ {k = 1} ^ {n} k \times \dfrac {n} {k} \dbinom {n - 1} {k - 1} \dbinom {n} {n - k} \\ & = \sum \limits _ {k = 1} ^ {n} n \dbinom {n - 1} {k - 1} \dbinom {n} {n - k} \\ & = n \sum \limits _ {k = 1} ^ {n} \dbinom {n - 1} {k - 1} \dbinom {n} {n - k} \\ & = n \sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n - 1} {k - 1} \\ \end{aligned} \]

即證 \(n \sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n - 1} {k - 1} = n \dbinom {2n - 1} {n - 1}\)
即證 \(\sum \limits _ {k = 1} ^ {n} \dbinom {n} {n - k} \dbinom {n - 1} {k - 1} = \dbinom {2n - 1} {n - 1}\)

  • 右式含義:在 \(2n - 1\) 個小球中選擇 \(n - 1\) 個的方案數
  • 左式含義:( 在前 \(n\) 個小球中選擇 \(n - k\) 個 ) 和 ( 在後 \(n - 1\) 個小球中選擇 \(k - 1\) 個 ) 的方案數之和;\(\because 1 \leq k \leq n\)\(\therefore n - k, k - 1 \geq 0\),故此含義成立

顯然,左右兩式等價

證畢