1. 程式人生 > 其它 >群體智慧演算法-黏菌尋找食物最優路線行為模擬 2

群體智慧演算法-黏菌尋找食物最優路線行為模擬 2

說明:此文章為騰訊雲機器自動從本人csdn部落格搬遷過來。是本人授權操作。

申明:無本人授權,不可轉載本文。如有轉載,本人保留追究其法律責任的權利。

龔浩華,QQ 29185807,月牙寂 道長

第一時間獲取文章,可以關注本人公眾號 月牙寂道長 yueyajidaozhang

經過查詢一些資料,發現目前比較好的理論支撐有元胞自動機,其中的分形理論中的擴散限制凝聚模型與黏菌的網路比較貼切。 經過反覆的調整。現在購機了一個黏菌的網路。如圖: 第一個圖為模擬的過程 第二圖為最終圖的放大

其中依然有有幾個假設 1、黏菌的生命力,隨著擴充套件,生命力降低 2、隨著擴充套件完之後,黏菌在整個擴充套件範圍內,隨機生成一些感觸點,然後感觸點生成網路      感觸點的生長原則,則是最大可能從生命力低的地方向生命力高的地方生長,直至生長到了有網路的地方,或者是黏菌的核心。 不足的地方: 在模擬行為中採用的是元胞為小方塊,所以會出現圖中的一些對角線的直線。 備註: 其中圖片採用的是jpg,為200*200畫素。載入的是一個全白的圖片,後面的黑點為程式模擬出來的 原始碼如下

package main
import (
"fmt"
"image"
"image/jpeg"
// "io"
"image/color"
"math/rand"
"os"
"path"
"runtime"
"sync"
"time"
)
func main() {
runtime.GOMAXPROCS(1)
for {
select {}
}
}
var max_x int = 200
var max_y int = 200
var lock *sync.RWMutex
var im image.Image
var AllPart []Parts
var wg *sync.WaitGroup
type Parts []*Part
type Part struct {
x      int
y      int
en     int
black  bool
walked bool
}
func NewPart(x, y int) *Part {
p := Part{x, y, 0, false, false}
return &p
}
func initImage() error {
f, err := os.Open("200.jpg")
if err != nil {
fmt.Println(err)
return err
}
defer f.Close()
im, err = jpeg.Decode(f)
if err != nil {
fmt.Println(err)
return err
}
return nil
}
func Print() {
tick := time.Tick(1 * time.Second)
count := 1
for {
select {
case <-tick:
func() {
p := path.Join("./worm", fmt.Sprintf("%d.jpg", count))
lock.Lock()
f, _ := os.OpenFile(p, os.O_RDWR|os.O_CREATE, 0x666)
jpeg.Encode(f, im, nil)
f.Close()
lock.Unlock()
count++
}()
}
}
}
func init() {
initImage()
wg = &sync.WaitGroup{}
lock = &sync.RWMutex{}
AllPart = make([]Parts, max_y, max_y)
for y := 0; y < max_y; y++ {
AllPart[y] = Parts(make([]*Part, max_x, max_x))
}
for y := 0; y < max_y; y++ {
for x := 0; x < max_x; x++ {
AllPart[y][x] = NewPart(x, y)
}
}
AllPart[max_y/2][max_x/2].en = 200
AllPart[max_y/2][max_x/2].black = true
AllPart[max_y/2][max_x/2].walked = true
SetBlack(max_x/2, max_y/2)
for i := 0; i < 500; i++ {
rand.Seed(rand.Int63())
y1 := int(rand.Int31()) % max_y
x1 := int(rand.Int31()) % max_x
if x1 == max_x/2 && y1 == max_y/2 {
continue
}
AllPart[y1][x1].black = true
SetBlack(x1, y1)
}
for y := 0; y < max_y; y++ {
for x := 0; x < max_x; x++ {
wg.Add(1)
}
}
for y := 0; y < max_y; y++ {
for x := 0; x < max_x; x++ {
go AllPart[y][x].run()
}
}
go Print()
}
func getEn(x, y int) int {
if x < 0 || y < 0 {
return -1
}
if x >= max_x || y >= max_y {
return -1
}
return AllPart[y][x].en
}
func SetBlack(x, y int) {
p := im.(*image.YCbCr)
if !(image.Point{x, y}.In(p.Rect)) {
return
}
yi := p.YOffset(x, y)
ci := p.COffset(x, y)
p.Y[yi], p.Cb[ci], p.Cr[ci] = color.RGBToYCbCr(0, 0, 0)
}
func (p *Part) run() {
wg.Done()
wg.Wait()
tick := time.Tick(1 * time.Second)
for {
select {
case <-tick:
if p.walked {
return
}
func() {
other := make(map[*Part]int)
max_node := 0
otherblack := 0
getmax := func(xi, yi int) {
en := getEn(xi, yi)
if en > 0 {
other[AllPart[yi][xi]] = en
if AllPart[yi][xi].black {
otherblack++
}
}
if en > max_node {
max_node = en
}
}
getmax(p.x-1, p.y-1)
getmax(p.x, p.y-1)
getmax(p.x+1, p.y-1)
getmax(p.x-1, p.y)
getmax(p.x+1, p.y)
getmax(p.x-1, p.y+1)
getmax(p.x, p.y+1)
getmax(p.x+1, p.y+1)
if p.en == 0 {
if max_node > 0 {
p.en = max_node - 1
}
return
}
if p.black {
//maxwalk
ensum := 0
havewalked := 0
nextother := make(map[*Part]int)
for np, en := range other {
if en > p.en {
nextother[np] = en
ensum += en
if np.walked {
havewalked++
}
}
}
if len(nextother) <= 1 {
for np, en := range other {
if en == p.en {
nextother[np] = en
ensum += en
if np.walked {
havewalked++
}
}
}
}
if len(nextother) == 0 {
for np, en := range other {
if en < p.en {
nextother[np] = en
ensum += en
if np.walked {
havewalked++
}
}
}
}
if havewalked > 0 {
p.walked = true
return
}
if ensum > 0 {
rand.Seed(rand.Int63())
rn := int(rand.Int31()) % ensum
for np, _ := range nextother {
rn = rn - np.en
if rn <= 0 {
np.black = true
SetBlack(np.x, np.y)
p.walked = true
return
}
}
}
}
}()
}
}
}