Tree Painting 換根DP
阿新 • • 發佈:2020-08-14
#include <iostream> #include <vector> #include <algorithm> #include <string> #include <set> #include <queue> #include <map> #include <sstream> #include <cstdio> #include <cstring> #include <numeric> #include <cmath> #include<iomanip> #include <deque> #include <bitset> #include <cassert> //#include <unordered_set> //#include <unordered_map> #define ll long long #define pii pair<int, int> #define rep(i,a,b) for(int i=a;i<=b;i++) #define dec(i,a,b) for(int i=a;i>=b;i--) #defineforn(i, n) for(int i = 0; i < int(n); i++) using namespace std; int dir[4][2] = { { 1,0 },{ 0,1 } ,{ 0,-1 },{ -1,0 } }; const long long INF = 0x7f7f7f7f7f7f7f7f; const int inf = 0x3f3f3f3f; const double pi = acos(-1.0); const double eps = 1e-6; const int mod = 998244353; inline int read() { intx = 0; bool f = true; char c = getchar(); while (c < '0' || c > '9') { if (c == '-') f = false; c = getchar(); } while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar(); return f ? x : -x; } inline ll gcd(ll m, ll n) { return n == 0 ? m : gcd(n, m % n); } void exgcd(ll A, ll B, ll& x, ll& y) { if (B) exgcd(B, A % B, y, x), y -= A / B * x; else x = 1, y = 0; } inline ll qpow(ll x, ll n) { int r = 1; while (n > 0) { if (n & 1) r = 1ll * r * x %mod; n >>= 1; x = 1ll * x * x %mod; } return r; } inline int inv(int x) { return qpow(x, mod - 2); } ll lcm(ll a, ll b) { return a * b / gcd(a, b); } /**********************************************************/ const int N = 2e5 + 5; vector<ll> g[N]; vector<ll> size1(N, 1), f(N), a(N); ll n; int dfs1(int x, int fa) { for (int to : g[x]) { if (to != fa) { size1[x] += dfs1(to, x); f[x] += f[to]; } } f[x] += size1[x]; return size1[x]; } ll ans; void dfs2(int x, int fa) { if (x != 1) { a[x] = a[fa] + n - size1[x] * 2ll; ans = max(ans, a[x]); } for (int to : g[x]) { if(to!=fa) dfs2(to, x); } } int main() { cin >> n; rep(i, 1, n - 1) { int u, v; cin >> u >> v; g[u].push_back(v); g[v].push_back(u); } dfs1(1, -1); ans = a[1] = f[1]; dfs2(1, -1); cout << ans << endl; return 0; }