python/Matplotlib繪製複變函式影象教程
阿新 • • 發佈:2020-01-09
今天發現sympy依賴的庫mpmath裡也有很多數學函式,其中也有在複平面繪製二維圖的函式cplot,具體例子如下
from mpmath import * def f1(z): return z def f2(z): return z**3 def f3(z): return (z**4-1)**(1/4) def f4(z): return 1/z def f5(z): return atan(z) def f6(z): return sqrt(z) cplot(f1) cplot(f2) cplot(f3) cplot(f4) cplot(f5) cplot(f6)
參照matlab繪製複變函式的例子,使用python實現繪製複變函式影象,網上還沒搜到相關的文章,在這裡分享出來供大家學習。
''' 參照matlab繪製複變函式的例子,建立函式cplxgrid,cplxmap,cplxroot ''' # 1.匯入相關庫 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import * # 2.建立函式 def cplxgrid(m): '''Return polar coordinate complex grid. Parameters ---------- m: int Returns ---------- z: ndarray,with shape (m+1)-by-(2*(m+1)) ''' m = m r = np.arange(0,m).reshape(m,1) / m theta = np.pi * np.arange(-m,m) / m z = r * np.exp(1j * theta) return z def cplxroot(n=3,m=20): ''' cplxroot(n): renders the Riemann surface for the n-th root cplxroot(): renders the Riemann surface for the cube root. cplxroot(n,m): uses an m-by-m grid. Default m = 20. Use polar coordinates,(r,theta). Use polar coordinates,theta). Parameters ---------- n: n-th root m: int Returns ---------- None: Plot the Riemann surface ''' m = m+1 r = np.arange(0,1) / m theta = np.pi * np.arange(-n * m,n * m) / m z = r * np.exp(1j * theta) s = r * (1/n) * np.exp(1j * theta / n) fig = plt.figure() ax = fig.add_subplot(111,projection='3d') # ax.plot_surface(np.real(z),np.imag(z),np.real(s),color = np.imag(s)) ax.plot_surface(np.real(z),cmap = plt.cm.hsv) ax.set_xlim((-1,1)) ax.set_ylim((-1,1)) ax.set_xlabel('Real') ax.set_ylabel('Imag') ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) ax.set_autoscalez_on(True)#z軸自動縮放 ax.grid('on') plt.show() def cplxmap(z,cfun): ''' Plot a function of a complex variable. Parameters ---------- z: complex plane cfun: complex function to plot Returns ---------- None: Plot the surface of complex function ''' blue = 0.2 x = np.real(z) y = np.imag(z) u = np.real(cfun) v = np.imag(cfun) M = np.max(np.max(u))#複變函式實部最大值 m = np.min(np.min(u))#複變函式實部最大值 s = np.ones(z.shape) fig = plt.figure() ax = fig.add_subplot(111,projection='3d') # 投影部分用線框圖 surf1 = ax.plot_wireframe(x,y,m*s,cmap=plt.cm.hsv) surf2 = ax.plot_surface(x,u,cmap=plt.cm.hsv) #繪製複變函式1/z時會出錯,ValueError: Axis limits cannot be NaN or Inf # ax.set_zlim(m,M) ax.set_xlim((-1,1)) ax.set_xlabel('Real') ax.set_ylabel('Imag') ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) ax.set_autoscalez_on(True)#z軸自動縮放 ax.grid('on') plt.show() def _test_cplxmap(): '''測試cplxmap函式''' z = cplxgrid(30) w1 = z w2 = z**3 w3 = (z**4-1)**(1/4) w4 = 1/z w5 = np.arctan(2*z) w6 = np.sqrt(z) w = [w1,w2,w3,w4,w5,w6] for i in w: cplxmap(z,i) def _test_cplxroot(): '''測試cplxroot函式''' cplxroot(n=2) cplxroot(n=3) cplxroot(n=4) cplxroot(n=5) if __name__ == '__main__': _test_cplxmap() _test_cplxroot()
以上這篇python/Matplotlib繪製複變函式影象教程就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支援我們。