Kaldi + CNN for Speech Enhancement
(一)網絡結構
input-> C1 –>softmax –>S2 –> C3 –>softmax –>S4 –>FC5 –> softmax –> FC6
(二)數據預處理
1.歸一化:提取音頻.wav的對數頻譜值作為特征值(d=129),並歸一化之;
2.擴幀:對每一幀左右各擴5幀,擴幀後的維度 D =d*(5*2+1) =d*11;
(三)初始化各網絡層
1. conv1
① in_dim = D
② stride1 = d
③ num_patch1 = 1+(stride1 - patch1_dim)/patch1_step
④ out_dim = num_filters1 *num_patch1
2. mpool1
① in_dim = out_dim (1.④)
② num_pool1 = num_patch1 / pool1_size
③ out_dim = num_filters1 *num_pool1
3.conv2
① in_dim = out_dim (2.③)
② stride2 = num_filters1 *num_pool1
③ patch2_dim = patch2_dim *num_filters1
④ patch2_step = num_filters1
⑤ num_patch2 = 1+(stride2 – patch2_dim)/patch2_step
⑥ out_dim = num_filters2 *num_patch2
4.mpool2
① in_dim = out_dim (3.⑥)
② num_pool2 = num_patch2 / pool2_size
③ out_dim = num_filters2 *num_pool2
5.FC1 & FC2
in_dim = out_dim = d
Kaldi + CNN for Speech Enhancement