1. 程式人生 > >Cqoi2017試題泛做

Cqoi2017試題泛做

++i 得到 math 整數 mem 題目 mage ash logs

Day1

4813: [Cqoi2017]小Q的棋盤

樹形背包DP。

技術分享
 1 #include <cstdio>
 2 
 3 #define maxn 110
 4 #define R register
 5 #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
 6 struct Edge {
 7     Edge *next;
 8     int to;
 9 } *last[maxn], e[maxn << 1], *ecnt = e;
10 inline void link(R int
a, R int b) 11 { 12 *++ecnt = (Edge) {last[a], b}; last[a] = ecnt; 13 *++ecnt = (Edge) {last[b], a}; last[b] = ecnt; 14 } 15 int f1[maxn][maxn], f2[maxn][maxn], m; 16 bool vis[maxn]; 17 void dfs(R int x) 18 { 19 vis[x] = 1; 20 for (R int i = 0; i <= m; ++i) f1[x][i] = f2[x][i] = 1
; 21 for (R Edge *iter = last[x]; iter; iter = iter -> next) 22 if (!vis[iter -> to]) 23 { 24 dfs(iter -> to); 25 for (R int j = m; j; --j) 26 for (R int k = 0; k < j; ++k) 27 { 28 cmax(f1[x][j], f2[x][j - k - 1
] + f1[iter -> to][k]); 29 k != j - 1 ? cmax(f1[x][j], f1[x][j - k - 2] + f2[iter -> to][k]) : 0; 30 } 31 for (R int j = m; j >= 2; --j) 32 for (R int k = 0; k < j - 1; ++k) 33 cmax(f2[x][j], f2[x][j - k - 2] + f2[iter -> to][k]); 34 } 35 } 36 int main() 37 { 38 R int n; scanf("%d%d", &n, &m); 39 for (R int i = 1; i < n; ++i) {R int a, b; scanf("%d%d", &a, &b); link(a, b);} 40 dfs(0); 41 R int ans = 1; 42 for (R int i = 1; i <= m; ++i) cmax(ans, f1[0][i]), cmax(ans, f2[0][i]); 43 printf("%d\n", ans); 44 return 0; 45 }
D1T1

4814: [Cqoi2017]小Q的草稿

暫時還沒做。marked。

4815: [Cqoi2017]小Q的表格

做完發現自己推式子和推結論的能力不足。這題有一個結論是只和對角線上的元素的權值有關,並且f[a,b]可以寫成k*a*b的形式(這個結論我也是網上看的,但是我向BZOJ要的數據裏這個條件並不滿足,如果直接將題目給你的x/a/b得到的不會是一個整數,而把x/a/b改成模意義下x*a^(-1)*b^(-1)居然就能過了)。然後推出來是∑f[d]*∑∑(i*j*[gcd(i,j)==d]),然後還有一個結論是

∑i*[gcd(i,n)==1]=phi(n)*n/2。如果知道這兩個結論應該剩下就只剩套路了(?)。設g[n] = ∑∑(i*j*[gcd(i,j)==1], 1<=i,j<=n),答案變成求∑f[d]*g[k/d]。然後k/d是根號分段的,根號枚舉一下然後動態地求前綴和。前綴和這裏用分塊來實現根號修改O1查詢。總的復雜度O(n+m√n)。

技術分享
 1 #include <cstdio>
 2 #include <cmath>
 3 
 4 #define R register
 5 #define maxn 4000010
 6 #define maxs 2333
 7 typedef long long ll;
 8 const int mod = 1e9 + 7;
 9 int pr[maxn], prcnt, phi[maxn], g[maxn], f[maxn];
10 int sum[maxn], ssum[maxs];
11 bool vis[maxn];
12 inline int qpow(R int base, R int power)
13 {
14     R int ret = 1;
15     for (; power; power >>= 1, base = 1ll * base * base % mod)
16         power & 1 ? ret = 1ll * ret * base % mod : 0;
17     return ret;
18 }
19 int gcd(R int a, R int b)
20 {
21     return !b ? a : gcd(b, a % b);
22 }
23 int main()
24 {
25     R int m, n; scanf("%d%d", &m, &n);
26     phi[1] = 1; g[1] = 1; f[1] = 1;
27     for (R int i = 2; i <= n; ++i)
28     {
29         if (!vis[i]) pr[++prcnt] = i, phi[i] = i - 1;
30         g[i] = (g[i - 1] + 1ll * i * i % mod * phi[i]) % mod;
31         f[i] = 1ll * i * i % mod;
32         for (R int j = 1; j <= prcnt && 1ll * pr[j] * i <= n; ++j)
33         {
34             vis[i * pr[j]] = 1;
35             if (i % pr[j] == 0)
36             {
37                 phi[i * pr[j]] = phi[i] * pr[j];
38                 break;
39             }
40             else phi[i * pr[j]] = phi[i] * phi[pr[j]];
41         }
42     }
43     R int size = sqrt(n), tot = n / size + 1;
44 //    printf("\nsize%d\n", size);
45     for (R int i = 1; i <= n; ++i)
46         if (i % size == 0) ssum[i / size] = (ssum[i / size - 1] + sum[i - 1]) % mod, sum[i] = f[i];
47         else sum[i] = (sum[i - 1] + f[i]) % mod;
48 //    for (R int i = 1; i <= n; ++i) printf("%d ", sum[i]); puts("");
49     for (; m; --m)
50     {
51         R int a, b, k, d; R ll x;
52         scanf("%d%d%lld%d", &a, &b, &x, &k);
53 //        if (x % a != 0 || x % b != 0) puts("WA"), printf("%lld %d %d %d\n", x, a, b, m);
54         x %= mod;
55 //        printf("kk %lld\n", kk);
56         f[d = gcd(a, b)] = 1ll * x * qpow(1ll * a * b % mod, mod - 2) % mod * d % mod * d % mod;
57         R int spos = d / size + 1;
58         for (R int i = d; i < spos * size; ++i) sum[i] = ((i % size == 0 ? 0 : sum[i - 1]) + f[i]) % mod;
59         for (R int i = spos; i <= tot; ++i) ssum[i] = (ssum[i - 1] + sum[i * size - 1]) % mod;
60 //        for (R int i = 1; i <= n; ++i) printf("%d ", sum[i]); puts("");
61         R int ans = 0;
62         #define query(x) (sum[(x)] + ssum[(x) / size])
63         for (R int i = 1, j; i <= k; i = j + 1)
64         {
65             j = k / (k / i);
66             ans = (ans + 1ll * (query(j) % mod - query(i - 1) % mod + mod) % mod * g[k / i]) % mod;
67         }
68         printf("%d\n", ans);
69     }
70     return 0;
71 }
D1T3

Day2

4822: [Cqoi2017]老C的任務

挺裸的二維數點問題。掃描線+樹狀數組簡單維護即可。(將一個詢問拆成幾個前綴詢問加加減減的形式)

技術分享
 1 #include <cstdio>
 2 #include <algorithm>
 3 
 4 #define R register
 5 #define lowbit(_x) ((_x) & -(_x))
 6 #define maxn 100010
 7 struct Event {
 8     int type, id, x, l, r;
 9     inline bool operator < (const Event &that) const {return x < that.x || (x == that.x && type < that.type);}
10 } p[maxn << 2];
11 int hash[maxn << 2], hcnt, pcnt;
12 typedef long long ll;
13 ll b[maxn << 2], ans[maxn];
14 inline void add(R int pos, R int val)
15 {
16     for (; pos <= hcnt; pos += lowbit(pos)) b[pos] += val;
17 }
18 inline ll query(R int pos)
19 {
20     R ll ret = 0;
21     for (; pos; pos -= lowbit(pos)) ret += b[pos];
22     return ret;
23 }
24 int main()
25 {
26     R int n, m, pcnt = 0; scanf("%d%d", &n, &m);
27     for (R int i = 1; i <= n; ++i)
28     {
29         R int x, y, pi; scanf("%d%d%d", &x, &y, &pi);
30         hash[++hcnt] = y;
31         p[++pcnt] = (Event) {1, 0, x, y, pi};
32     }
33     for (R int i = 1; i <= m; ++i)
34     {
35         R int x_1, y_1, x_2, y_2; scanf("%d%d%d%d", &x_1, &y_1, &x_2, &y_2);
36         hash[++hcnt] = y_1; hash[++hcnt] = y_2;
37         p[++pcnt] = (Event) {2, i, x_1 - 1, y_1, y_2};
38         p[++pcnt] = (Event) {3, i, x_2, y_1, y_2};
39     }
40     std::sort(hash + 1, hash + hcnt + 1);
41     hcnt = std::unique(hash + 1, hash + hcnt + 1) - hash - 1;
42     std::sort(p + 1, p + pcnt + 1);
43     for (R int i = 1; i <= pcnt; ++i)
44     {
45         p[i].l = std::lower_bound(hash + 1, hash + hcnt + 1, p[i].l) - hash;
46         if (p[i].type == 1)
47         {
48             add(p[i].l, p[i].r);
49         }
50         else
51         {
52             p[i].r = std::lower_bound(hash + 1, hash + hcnt + 1, p[i].r) - hash;
53             if (p[i].type == 2) ans[p[i].id] -= query(p[i].r) - query(p[i].l - 1);
54             else ans[p[i].id] += query(p[i].r) - query(p[i].l - 1);
55         }
56     }
57     for (R int i = 1; i <= m; ++i) printf("%lld\n", ans[i]);
58     return 0;
59 }
D2T1

4823: [Cqoi2017]老C的方塊

剛開始我連構圖都沒想到。後來看了題解完構圖還是構錯了。

技術分享

將格子染成如上圖所示的四種顏色,然後每一種方塊都可以表示成0-1-2-3的形式。然後構建分層圖,一條從s到t的路徑表示的就是一個棄療的方塊,所以跑一個最小割即可。然後我一開始好像染色還染錯了,註意一下染色的順序(一定得都是0-1-2-3的形式),如果染不清楚的話可能會有奇怪的錯誤。還有,10w的網絡流到底是怎麽跑過去的,我不是很能理解啊。。。

技術分享
  1 #include <cstdio>
  2 #include <map>
  3 #include <algorithm>
  4 #include <cstring>
  5  
  6 #define R register
  7 #define P std::pair<int, int>
  8 #define maxn 200010
  9 #define inf 0x7fffffff
 10 #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
 11 std::map<P, int> id;
 12 int x[maxn], y[maxn], w[maxn];
 13 struct Edge {
 14     Edge *next, *rev;
 15     int to, cap;
 16 } *last[maxn], *cur[maxn], e[maxn * 10], *ecnt = e;
 17 inline void link(R int a, R int b, R int w)
 18 {
 19 //  printf("%d %d %d\n", a, b, w);
 20     *++ecnt = (Edge) {last[a], ecnt + 1, b, w}; last[a] = ecnt;
 21     *++ecnt = (Edge) {last[b], ecnt - 1, a, 0}; last[b] = ecnt;
 22 }
 23 int dep[maxn], q[maxn], s, t, ans;
 24 inline bool bfs()
 25 {
 26     memset(dep, -1, (t + 1) << 2);
 27     dep[q[1] = t] = 0; R int head = 0, tail = 1;
 28     while (head < tail)
 29     {
 30         R int now = q[++head];
 31         for (R Edge *iter = last[now]; iter; iter = iter -> next)
 32             if (iter -> rev -> cap && dep[iter -> to] == -1)
 33                 dep[q[++tail] = iter -> to] = dep[now] + 1;
 34     }
 35     return dep[s] != -1;
 36 }
 37 int dfs(R int x, R int f)
 38 {
 39     if (x == t) return f;
 40     R int used = 0;
 41     for (R Edge* &iter = cur[x]; iter; iter = iter -> next)
 42         if (iter -> cap && dep[iter -> to] + 1 == dep[x])
 43         {
 44             R int v = dfs(iter -> to, dmin(f - used, iter -> cap));
 45             iter -> cap -= v;
 46             iter -> rev -> cap += v;
 47             used += v;
 48             if (used == f) return f;
 49         }
 50     return used;
 51 }
 52 void dinic()
 53 {
 54     while (bfs())
 55     {
 56         memcpy(cur, last, sizeof cur);
 57         ans += dfs(s, inf);
 58     }
 59 }
 60 void build(R int _x, R int _y, R int i)
 61 {
 62     R P next;
 63     next = std::make_pair(_x, _y);
 64     if (id[next]) link(id[next] << 1 | 1, i << 1, inf);
 65 }
 66 int main()
 67 {
 68     R int c, r, n; scanf("%d%d%d", &c, &r, &n);
 69     for (R int i = 1; i <= n; ++i)
 70     {
 71         scanf("%d%d%d", &x[i], &y[i], &w[i]);
 72         R P pos = std::make_pair(x[i], y[i]);
 73         id[pos] = i;
 74     }
 75     s = 0; t = n * 2 + 2;
 76     for (R int i = 1; i <= n; ++i)
 77     {
 78         R int col = y[i] & 1 ? x[i] % 4 : (x[i] % 4) ^ 1;
 79 //      printf("x %d y %d col %d\n", x[i], y[i], col);
 80         link(i << 1, i << 1 | 1, w[i]);
 81         if (col == 0)
 82         {
 83             link(s, i << 1, inf);
 84         }
 85         else if (col == 1)
 86         {
 87             build(x[i], y[i] - 1, i);
 88             build(x[i], y[i] + 1, i);
 89             build(x[i] + (y[i] & 1 ? -1 : 1), y[i], i);
 90         }
 91         else if (col == 2)
 92         {
 93             build(x[i] + (y[i] & 1 ? -1 : 1), y[i], i);
 94         }
 95         else if (col == 3)
 96         {
 97             build(x[i], y[i] - 1, i);
 98             build(x[i], y[i] + 1, i);
 99             build(x[i] + (y[i] & 1 ? -1 : 1), y[i], i);
100             link(i << 1 | 1, t, inf);
101         }
102     }
103     dinic();
104     printf("%d\n", ans);
105     return 0;
106 }
D2T2

4824: [Cqoi2017]老C的鍵盤

還沒做。marked。

Cqoi2017試題泛做