HDU-3591 混合背包
阿新 • • 發佈:2017-07-20
memory 一道 efi 混合 problem ase strong 復雜 number
題目大意就是小倩付多少錢才會有交換的硬幣次數最少。
這是一道混合背包題目,小倩的硬幣是多重背包,售貨員的是完全背包。因為不會超過20000元;那麽遍歷就好了
AC代碼:
The trouble of Xiaoqian
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description In the country of ALPC , Xiaoqian is a very famous mathematician. She is immersed in calculate, and she want to use the minimum number of coins in every shopping. (The numbers of the shopping include the coins she gave the store and the store backed to her.)
Total Submission(s): 2277 Accepted Submission(s): 805
And now , Xiaoqian wants to buy T (1 ≤ T ≤ 10,000) cents of supplies. The currency system has N (1 ≤ N ≤ 100) different coins, with values V1, V2, ..., VN (1 ≤ Vi ≤ 120). Xiaoqian is carrying C1 coins of value V1, C2 coins of value V2, ...., and CN coins of value VN (0 ≤ Ci ≤ 10,000). The shopkeeper has an unlimited supply of all the coins, and always makes change in the most efficient manner .But Xiaoqian is a low-pitched girl , she wouldn’t like giving out more than 20000 once. Input There are several test cases in the input.
Line 1: Two space-separated integers: N and T.
Line 2: N space-separated integers, respectively V1, V2, ..., VN coins (V1, ...VN)
Line 3: N space-separated integers, respectively C1, C2, ..., CN
The end of the input is a double 0. Output Output one line for each test case like this ”Case X: Y” : X presents the Xth test case and Y presents the minimum number of coins . If it is impossible to pay and receive exact change, output -1. Sample Input 3 70 5 25 50 5 2 1 0 0 Sample Output Case 1: 3
1 #include<iostream>
2 #include<stdio.h>
3 #include<algorithm>
4 #include<string.h>
5 #include<string>
6 #define INF 9999999
7 #include<algorithm>
8 using namespace std;
9 int dp1[20005],dp2[20005];
10 int val[150],num[150];
11 int min(int x,int y)
12 {
13 return x>y? y:x;
14 }
15 int main()
16 {
17 int n,m;
18 int T=1;
19 while(cin>>n>>m)
20 {
21 if(n==0&&m==0) break;
22 for(int i=1;i<=n;i++)
23 cin>>val[i];
24 for(int i=1;i<=n;i++)
25 cin>>num[i];
26 for(int i=1;i<=20000;i++)
27 dp1[i]=dp2[i]=INF;
28 dp1[0]=dp2[0]=0;
29 for(int i=1;i<=n;i++)//多重背包
30 {
31 for(int k=1,flag=0;;k*=2)
32 {
33 if(k*2>num[i])
34 {
35 k=num[i]-k+1;
36 flag=1;
37 }
38 for(int j=20000;j>=k*val[i];j--)
39 {
40 dp1[j]=min(dp1[j],dp1[j-k*val[i]]+k);
41 }
42 if(flag)
43 break;
44 }
45 }
46 for(int i=1;i<=n;i++)//完全背包,這裏有兩種寫法,一種是這種常規的優化了的,還有一種適合新手,雖然復雜度會高些,但是新手理解起來會更容易。
47 {
48 for(int j=val[i];j<=20000;j++)49 dp2[j]=min(dp2[j],dp2[j-val[i]]+1);
50 }
/*
for(int i=1;i<=n;i++)
{
for(int k=1;k*val[i]<20000;k*=2)//類比於多重背包
{
for(int j=20000;j>=k*val[i];j--)
{
dp2[j]=min(dp2[j],dp2[j-k*val[i]]+k);
}
}
}
*/
51 int lss=INF; 52 for(int i=m;i<=20000;i++) 53 { 54 lss=min(lss,dp1[i]+dp2[i-m]); 55 } 56 if(lss>20000) 57 cout<<"Case "<<T++<<": "<<-1<<endl; 58 else 59 cout<<"Case "<<T++<<": "<<lss<<endl; 60 } 61 return 0; 62 }
HDU-3591 混合背包