1. 程式人生 > >Python機器學習(1):KMeans聚類

Python機器學習(1):KMeans聚類

ima mea arr src ont array imp rom open

Python進行KMeans聚類是比較簡單的,首先需要import numpy,從sklearn.cluster中import KMeans模塊:

import numpy as np
from sklearn.cluster import KMeans

然後讀取txt文件,獲取相應的數據並轉換成numpy array:

X = []
f = open(rktj4.txt)
for v in f:
    regex = re.compile(\s+)
    X.append([float(regex.split(v)[3]), float(regex.split(v)[6])])

X 
= np.array(X)

設置類的數量,並聚類:

n_clusters = 5
cls = KMeans(n_clusters).fit(X)

完整代碼:

import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import re

X = []
f = open(rktj4.txt)
for v in f:
    regex = re.compile(\s+)
    X.append([float(regex.split(v)[
3]), float(regex.split(v)[6])]) X = np.array(X) n_clusters = 5 cls = KMeans(n_clusters).fit(X) cls.labels_ markers = [^,x,o,*,+] for i in range(n_clusters): members = cls.labels_ == i plt.scatter(X[members, 0], X[members, 1], s=60, marker=markers[i], c=b, alpha=0.5)
print plt.title(‘‘) plt.show()

運行結果:

技術分享

Python機器學習(1):KMeans聚類