1. 程式人生 > >Matlab 攝像機標定+畸變校正

Matlab 攝像機標定+畸變校正

ram str div spa 自然 show inpu log mman

博客轉載自:http://blog.csdn.net/Loser__Wang/article/details/51811347

本文目的在於記錄如何使用MATLAB做攝像機標定,並通過opencv進行校正後的顯示。

首先關於校正的基本知識通過OpenCV官網的介紹即可簡單了解:

http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html

對於攝像機我們所關心的主要參數為攝像機內參,以及幾個畸變系數。上面的連接中後半部分也給了如何標定,然而OpenCV自帶的標定程序稍顯繁瑣。因而在本文中我主推使用MATLAB的工具箱。下面讓我們開始標定過程。

標定板

標定的最開始階段最需要的肯定是標定板。兩種方法,直接從opencv官網上能下載到:
http://docs.opencv.org/2.4/_downloads/pattern.png

方法二:逼格滿滿(MATLAB)

J = (checkerboard(300,4,5)>0.5);
figure, imshow(J);

技術分享圖片

采集數據

那麽有了棋盤格之後自然是需要進行照片了。不多說,直接上程序。按q鍵即可保存圖像,盡量把鏡頭的各個角度都覆蓋好。

#include "opencv2/opencv.hpp"
#include <string>
#include <iostream>

using
namespace cv; using namespace std; int main() { VideoCapture inputVideo(0); //inputVideo.set(CV_CAP_PROP_FRAME_WIDTH, 320); //inputVideo.set(CV_CAP_PROP_FRAME_HEIGHT, 240); if (!inputVideo.isOpened()) { cout << "Could not open the input video " << endl; return
-1; } Mat frame; string imgname; int f = 1; while (1) //Show the image captured in the window and repeat { inputVideo >> frame; // read if (frame.empty()) break; // check if at end imshow("Camera", frame); char key = waitKey(1); if (key == 27)break; if (key == q || key == Q) { imgname = to_string(f++) + ".jpg"; imwrite(imgname, frame); } } cout << "Finished writing" << endl; return 0; }

保存大約15到20張即可。大家可以看到我的方法,直接對著實驗室的屏幕拍攝的。這個階段有個註意事項就是測量好屏幕上每個方格的大小,這個標定的時候會用到。

技術分享圖片

進行標定

直接而在MATLAB的Command Window裏面輸入cameraCalibrator即可調用標定應用。

技術分享圖片

首先先把之前照好的圖像添加進去,這是出現:

技術分享圖片

這就是之前讓你記錄的標定板中每個方格的大小。 輸入無誤後就涉及到最關鍵的一步了(MATLAB的這個實在太方便了,都是傻瓜式操作),選擇參數。

為什麽說他關鍵呢,因為如果你仔細閱讀了OpenCV的說明之後你會大概明白畸變參數,總共有五個,徑向畸變3個(k1,k2,k3)和切向畸變2個(p1,p2)。
徑向畸變

技術分享圖片

切向畸變

技術分享圖片

以及在OpenCV中的畸變系數的排列(這點一定要註意k1,k2,p1,p2,k3),千萬不要以為k是連著的。

技術分享圖片

並且通過實驗表明,三個參數的時候由於k3所對應的非線性較為劇烈。估計的不好,容易產生極大的扭曲,所以我們在MATLAB中選擇使用兩參數,並且選擇錯切和桶形畸變。

技術分享圖片

點擊開始後等待一段時間即可完成標定。並且MATLAB給出的可視化還是很不錯的,可以對比校正前後的樣子

技術分享圖片

點擊show Undistorted即可看到無畸變的圖像

技術分享圖片

到這為止,你已經完成了標定過程。選擇導出參數,即可把參數進行保存。

技術分享圖片

保存後可以退出標定應用,在MATLAB主界面中將保存的Mat文件打開

技術分享圖片

第二行就是參數

技術分享圖片

裏面的RadialDistortion對應k1,k2,k3設置為0了。
TangentialDistortion對應p1,p2。
IntrinsicMatrix對應內參,註意這個和OpenCV中是轉置的關系,註意不要搞錯。

技術分享圖片

對應

技術分享圖片

OpenCV中查看標定的結果

#include "opencv2/opencv.hpp"
#include <iostream>

using namespace cv;
using namespace std;

int main()
{
    VideoCapture inputVideo(0);
    if (!inputVideo.isOpened())
    {
        cout << "Could not open the input video: " << endl;
        return -1;
    }
    Mat frame;
    Mat frameCalibration;

    inputVideo >> frame;
    Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
    cameraMatrix.at<double>(0, 0) = 4.450537506243416e+02;
    cameraMatrix.at<double>(0, 1) = 0.192095145445498;
    cameraMatrix.at<double>(0, 2) = 3.271489590204837e+02;
    cameraMatrix.at<double>(1, 1) = 4.473690628394497e+02;
    cameraMatrix.at<double>(1, 2) = 2.442734958206504e+02;

    Mat distCoeffs = Mat::zeros(5, 1, CV_64F);
    distCoeffs.at<double>(0, 0) = -0.320311439187776;
    distCoeffs.at<double>(1, 0) = 0.117708464407889;
    distCoeffs.at<double>(2, 0) = -0.00548954846049678;
    distCoeffs.at<double>(3, 0) = 0.00141925006352090;
    distCoeffs.at<double>(4, 0) = 0;

    Mat view, rview, map1, map2;
    Size imageSize;
    imageSize = frame.size();
    initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),
        getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),
        imageSize, CV_16SC2, map1, map2);


    while (1) //Show the image captured in the window and repeat
    {
        inputVideo >> frame;              // read
        if (frame.empty()) break;         // check if at end
        remap(frame, frameCalibration, map1, map2, INTER_LINEAR);
        imshow("Origianl", frame);
        imshow("Calibration", frameCalibration);
        char key = waitKey(1);
        if (key == 27 || key == q || key == Q)break;
    }
    return 0;
}

修復之前和之後的結果對比

技術分享圖片

技術分享圖片

還有就是之前討論的為什麽選2系數而不是3系數。因為。。。。。。。 下面是三系數的修正結果,慘不忍睹啊
技術分享圖片

Matlab 攝像機標定+畸變校正