1. 程式人生 > >Bzoj4540: [Hnoi2016]序列

Bzoj4540: [Hnoi2016]序列

input 修改 size 樹狀 modify add operator () tor

題面

傳送門

Sol

處理出每個數\(a_i\)之前第一個比它小的數\(a_{l-1}\)和後面第一個比它小的數\(a_{r+1}\)
那麽左端點在\([l,i]\)右端點在\([i,r]\)的區間的最小值都是\(a_i\)

把它看成是一個頂點\((l,r)\)\((i,i)\)的矩形內的加法,每個數加上\(a_i\)

詢問就是頂點\((l,l)\)\((r,r)\)的矩形內求和

每列的每個位置的前綴和一定是個分段一次函數
那麽就維護一下斜率和截距
然後就可以掃描線一波
可以用樹狀數組區間修改+查詢
或者線段樹區間修改+查詢

# include <bits/stdc++.h>
# define IL inline
# define RG register # define Fill(a, b) memset(a, b, sizeof(a)) using namespace std; typedef long long ll; template <class Int> IL void Input(RG Int &x){ RG int z = 1; RG char c = getchar(); x = 0; for(; c < '0' || c > '9'; c = getchar()) z = c == '-'
? -1 : 1; for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); x *= z; } const int maxn(1e5 + 5); const int oo(1e9); int n, q, p, m, l[maxn], r[maxn], sta[maxn]; ll ans[maxn], ck[2][maxn], cb[2][maxn], a[maxn]; struct Modify{ int
x, l, r; ll k, b; IL int operator <(RG Modify b) const{ return x < b.x; } } mdy[maxn << 1]; struct Query{ int x, l, r, id, v; IL int operator <(RG Query b) const{ return x < b.x; } } qry[maxn << 1]; IL void Add(RG ll *c, RG int x, RG ll v){ for(; x <= n; x += x & -x) c[x] += v; } IL ll Sum(RG ll *c, RG int x){ RG ll ret = 0; for(; x; x -= x & -x) ret += c[x]; return ret; } IL void BITModify(RG int l, RG int r, RG ll vk, RG ll vb){ Add(ck[0], l, vk), Add(ck[0], r + 1, -vk); Add(cb[0], l, vk * (1 - l)), Add(cb[0], r + 1, vk * r); Add(ck[1], l, vb), Add(ck[1], r + 1, -vb); Add(cb[1], l, vb * (1 - l)), Add(cb[1], r + 1, vb * r); } IL ll BITQuery(RG int x, RG int l, RG int r){ RG ll sum1, sum2, k, b; sum1 = Sum(ck[0], l - 1) * (l - 1) + Sum(cb[0], l - 1); sum2 = Sum(ck[0], r) * r + Sum(cb[0], r); k = sum2 - sum1; sum1 = Sum(ck[1], l - 1) * (l - 1) + Sum(cb[1], l - 1); sum2 = Sum(ck[1], r) * r + Sum(cb[1], r); b = sum2 - sum1; return k * x + b; } int main(RG int argc, RG char* argv[]){ Input(n), Input(q), m = n << 1, p = q << 1; a[0] = a[n + 1] = -oo, sta[1] = 0; for(RG int i = 1, top = 1; i <= n; ++i){ l[i] = i, Input(a[i]); while(top && a[i] < a[sta[top]]) --top; if(top) l[i] = sta[top] + 1; sta[++top] = i; } sta[1] = n + 1; for(RG int i = n, top = 1; i; --i){ r[i] = i; while(top && a[i] <= a[sta[top]]) --top; if(top) r[i] = sta[top] - 1; sta[++top] = i; } for(RG int i = 1; i <= n; ++i){ mdy[i] = (Modify){l[i], i, r[i], a[i], a[i] * (1 - l[i])}; mdy[i + n] = (Modify){i + 1, i, r[i], -a[i], a[i] * i}; } sort(mdy + 1, mdy + m + 1); for(RG int i = 1, l, r; i <= q; ++i){ Input(l), Input(r); qry[i] = (Query){l - 1, l, r, i, -1}; qry[i + q] = (Query){r, l, r, i, 1}; } sort(qry + 1, qry + p + 1); for(RG int i = 1, j = 1; i <= p; ++i){ while(j <= m && mdy[j].x <= qry[i].x) BITModify(mdy[j].l, mdy[j].r, mdy[j].k, mdy[j].b), ++j; ans[qry[i].id] += BITQuery(qry[i].x, qry[i].l, qry[i].r) * qry[i].v; } for(RG int i = 1; i <= q; ++i) printf("%lld\n", ans[i]); return 0; }

Bzoj4540: [Hnoi2016]序列