72. Edit Distance
阿新 • • 發佈:2018-06-03
fin BE plan 表示 () TP delet following ive
問題描述:
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace ‘h‘ with ‘r‘) rorse -> rose (remove ‘r‘) rose -> ros (remove ‘e‘)
Example 2:
Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove ‘t‘) inention -> enention (replace ‘i‘ with ‘e‘) enention -> exention (replace ‘n‘ with ‘x‘) exention -> exection (replace ‘n‘ with ‘c‘) exection -> execution (insert ‘u‘)
解題思路:
這道題可以用動態規劃來做:
dp[i][j]表示的是word1的前i個字符變成word2的前j個字符的最少操作
當word1為空的時候,變成word2所需要的操作為word2.size()所以i = 0時dp[i][j] = j
同理: j = 0時 dp[i][j] = i
狀態轉移方程:
word1[i] = word2[j] : dp[i][j] = dp[i-1][j-1]
else: dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1])) + 1
代碼:
class Solution { public:int minDistance(string word1, string word2) { if(word1.empty()) return word2.size(); if(word2.empty()) return word1.size(); int m = word1.size()+1; int n = word2.size()+1; vector<vector<int>> dp(m, vector<int>(n, 0)); for(int i = 0; i < m; i++){ dp[i][0] = i; } for(int j = 0; j < n; j++){ dp[0][j] = j; } for(int i = 1; i < m; i++){ for(int j = 1; j < n; j++){ if(word1[i-1] == word2[j-1]) dp[i][j] = dp[i-1][j-1]; else dp[i][j] = min(dp[i-1][j-1],min(dp[i-1][j],dp[i][j-1])) + 1; } } return dp[m-1][n-1]; } };
72. Edit Distance